freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)專題題庫∶平行四邊形的綜合題附詳細答案-在線瀏覽

2025-03-30 22:20本頁面
  

【正文】 ,∴∠2+∠3=90176?!唷?+∠2=90176。AB=AD∴△BAG≌△ADN(AAS)∴AG=DN, 又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=AD=CD,即點E是CD的中點.(3)延長AE,BC交于點P,由(2)知DE=CD,∠ADE=∠ECP=90176。.(2)IH=FH;(3)EG2=AG2+CE2.【解析】【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四邊形EBFD是平行四邊形,再證明EB=ED即可.②先證明∠ABD=2∠ADB,推出∠ADB=30176。得到△DCM,先證明△DEG≌△DEM,再證明△ECM是直角三角形即可解決問題.【詳解】(1)①證明:如圖1中,∵四邊形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中, ,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四邊形EBFD是平行四邊形,∵EF⊥BD,OB=OD,∴EB=ED,∴四邊形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90176。∠ABD=60176?!唷螮BF=60176?!郋B=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中, ,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60176。在△BIF和△MJI中,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120176?!唷螶IF=60176?!螴FH=60176。∴IH=FH.(3)結(jié)論:EG2=AG2+CE2.理由:如圖3中,將△ADG繞點D逆時針旋轉(zhuǎn)90176。∴AFED四點共圓,∴∠EDF=∠DAE=45176。∴∠ADF+∠EDC=45176。=∠EDG,在△DEM和△DEG中, ,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45176。∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【點睛】考查四邊形綜合題、矩形的性質(zhì)、正方形的性質(zhì)、菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形,學(xué)會轉(zhuǎn)化的思想思考問題.9.如圖,現(xiàn)將平行四邊形ABCD沿其對角線AC折疊,使點B落在點B′處.AB′與CD交于點E.(1)求證:△AED≌△CEB′;(2)過點E作EF⊥AC交AB于點F,連接CF,判斷四邊形AECF的形狀并給予證明.【答案】(1)見解析(2)見解析【解析】【分析】(1)由題意可得AD=BC=B39。且∠AED=∠CEB39。C,∠B=∠B39。AD=B39。EC∴△ADE≌△B39。EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四邊形AECF是菱形【點睛】本題考查了折疊問題,全等三角形的判定和性質(zhì),平行四邊形的性質(zhì),菱形的判定,熟練掌握這些性質(zhì)和判定是解決問題的關(guān)鍵.10.在中,BD為AC邊上的中線,過點C作于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG,DF.求證:;求證:四邊形BDFG為菱形;若,求四邊形BDFG的周長.【答案】(1)證明見解析(2)證明見解析(3)8【解析】【分析】利用平行線的性質(zhì)得到,再利用直角三角形斜邊上的中線等于斜邊的一半即可得證,利用平行四邊形的判定定理判定四邊形BDFG為平行四邊形,再利用得結(jié)論即可得證,設(shè),則,利用菱形的性質(zhì)和勾股定理得到CF、AF和AC之間的關(guān)系,解出x即可.【詳解】證明:,又為AC的中點,又,證明:,四邊形BDFG為平行四邊形,又,四邊形BDFG為菱形,解:設(shè),則,在中,解得:,舍去,菱形BDFG的周長為8.【點睛】本題考查了菱形的判定與性質(zhì)直角三角形斜邊上的中線,勾股定理等知識,正確掌握這些定義性質(zhì)及判定并結(jié)合圖形作答是解決本題的關(guān)鍵.11.猜想與證明:如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.拓展與延伸:(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為   .(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.【答案】猜想:DM=ME,證明見解析;(2)成立,證明見解析.【解析】試題分析:延長EM交AD于點H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(1)、延長EM交AD于點H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(2)、連接AE,根據(jù)正方形的性質(zhì)得出∠FCE=45176。根據(jù)RT△ADF中AM=MF得出DM=AM=MF,根據(jù)RT△AEF中AM=MF得出AM=MF=ME,從而說明DM=ME.試題解析:如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠E
點擊復(fù)制文檔內(nèi)容
職業(yè)教育相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1