freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教學(xué)設(shè)計(jì)工作單-展示頁

2024-11-12 12:01本頁面
  

【正文】 節(jié)課中,學(xué)習(xí)了哪些知識(shí)?正弦定理及其發(fā)現(xiàn)和證明,正弦定理的初步應(yīng)用(2)正弦定理如何表述? a=b=csinAsinBsinC(3)表達(dá)式反映了什么?指出了任意三角形中,各邊與對(duì)應(yīng)角的正弦之間的一個(gè)關(guān)系式學(xué)案1.1正弦定理班級(jí)姓名學(xué)號(hào)一、學(xué)習(xí)目標(biāo)(1)正弦定理的發(fā)現(xiàn);(2)證明正弦定理的幾何法和向量法;(3)正弦定理的簡(jiǎn)單應(yīng)用。- - =abcbc由=得c=bsinC=2620180。五、教學(xué)過程(一)教學(xué)基本流程(一)創(chuàng)設(shè)情境,引出課題①在Rt△ABC中,各邊、角之間存在何種數(shù)量關(guān)系? 學(xué)生容易想到三角函數(shù)式子:(可能還有余弦、正a切的式子)bc sinC=1sinA=sinB=c b c②這三個(gè)式子中都含有哪個(gè)邊長(zhǎng)?c學(xué)生馬上看到,是c邊,因?yàn)?sinC=1=B C a c③那么通過這三個(gè)式子,邊長(zhǎng)c有幾種表示方法?abc ==sinAsinBsinC④得到的這個(gè)等式,說明了在Rt△中,各邊、角之間存在什么關(guān)系?(各邊和它所對(duì)角的正弦的比相等)⑥此關(guān)系式能不能推廣到任意三角形?設(shè)計(jì)意圖: 以舊引新, 打破學(xué)生原有認(rèn)知結(jié)構(gòu)的平衡狀態(tài), 刺激學(xué)生認(rèn)知結(jié)構(gòu)根據(jù)問題情境進(jìn)行自我組織, , 符合從特殊到一般的思維過程.(二)探究正弦定理abc==猜想:在任意的△ABC中, 各邊和它所對(duì)角的正弦的比相等, 即:sinAsinBsinC設(shè)計(jì)意圖:鼓勵(lì)學(xué)生模擬數(shù)學(xué)家的思維方式和思維過程, 大膽拓廣, 主動(dòng)投入數(shù)學(xué)發(fā)現(xiàn)過程,、直角三角形和鈍角三角形,對(duì)于直角三角形,我們前面已經(jīng)推導(dǎo)出這個(gè)關(guān)系式是成立的,那么我們現(xiàn)在是否需要分情況來證明此關(guān)系式? 設(shè)計(jì)意圖:及時(shí)總結(jié),使方向更明確,并培養(yǎng)學(xué)生的分類意識(shí)①那么能否把銳角三角形轉(zhuǎn)化為直角三角形來求證? ——可以構(gòu)造直角三角形②如何構(gòu)造直角三角形?——作高線(例如:作CD⊥AB,則出現(xiàn)兩個(gè)直角三角形)ab=③將欲證的連等式分成兩個(gè)等式證明,若先證明,sinAsinB那么如何將A、B、a、b聯(lián)系起來?——在兩個(gè)直角三角形Rt△BCD與Rt△ACD中,CD是公共邊: 在Rt△BCD中,CD= asinB,在Rt△ACD中,CD= bsinAab=\asinB=bsinA\sinAsinBbcsinB =sinC? ——作高線AE⊥BC,:把不熟悉的問題轉(zhuǎn)化為熟悉的問題, ===若△ABC為鈍角三角形,同理可證明:sinAsinBsinC(三)例題分析,加深理解例題:在△ABC中,已知C=,A=,AC=2620m,C 求AB.(精確到1米)解:B=180186。正弦定理要求學(xué)生綜合運(yùn)用正弦定理和內(nèi)角和定理等眾多基礎(chǔ)知識(shí)解決幾何問題和實(shí)際應(yīng)用問題,這些知識(shí)的掌握,有助于培養(yǎng)分析問題和解決問題能力,所以一向?yàn)閿?shù)學(xué)教育所重視。解析:先通過直角三角形找出三邊與三角的關(guān)系,再依次對(duì)銳角三角形與鈍角三角形進(jìn)行探討,歸納總結(jié)出正弦定理,并能進(jìn)行簡(jiǎn)單的應(yīng)用。通過本節(jié)課學(xué)習(xí),培養(yǎng)學(xué)生“用數(shù)學(xué)”的意識(shí)和自主、合作、探究能力?!墩叶ɡ怼肪o跟必修4(包括三角函數(shù)與平面向量)之后,可以啟發(fā)學(xué)生聯(lián)想所學(xué)知識(shí),運(yùn)用平面向量的數(shù)量積連同三角形、三角函數(shù)的其他知識(shí)作為工具,推導(dǎo)出正弦定理。情感目標(biāo)通過對(duì)實(shí)際問題的引入和解決,調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣,鼓勵(lì)學(xué)生對(duì)日常生活中的問題進(jìn)行探索。第一篇:正弦定理教學(xué)設(shè)計(jì)工作單正選定理學(xué)習(xí)目標(biāo):知識(shí)目標(biāo)知道解三角形的意義,掌握正弦定理,推證正弦定理。能力目標(biāo)利用正弦定理解決以下兩類問題:①已知三角形的兩角及一邊,求其他的角和邊; ②已知三角形的兩邊及其中一邊的對(duì)角,求其他的邊和角。第二篇:正弦定理教學(xué)設(shè)計(jì)教學(xué)設(shè)計(jì)一、內(nèi)容及其解析: 正弦定理: 《正弦定理》是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書必修5中第一章《解三角形》的學(xué)習(xí)內(nèi)容,比較系統(tǒng)地研究了解三角形這個(gè)課題。正弦定理是求解任意三角形的基礎(chǔ),又是學(xué)生了解向量的工具性和知識(shí)間的相互聯(lián)系的的開端,對(duì)進(jìn)一步學(xué)習(xí)任意三角形的求解、體會(huì)事物是相互聯(lián)系的辨證思想均起著舉足輕重的作用。二、目標(biāo)及其解析目標(biāo):(1)正弦定理的發(fā)現(xiàn);(2)證明正弦定理的幾何法和向量法;(3)正弦定理的簡(jiǎn)單應(yīng)用。三、教學(xué)問題診斷分析正弦定理是三角形邊角關(guān)系中最常見、最重要的兩個(gè)定理之一,它準(zhǔn)確反映了三角形中各邊與它所對(duì)角的正弦的關(guān)系,對(duì)于它的形式、內(nèi)容、證明方法和應(yīng)用必須引起足夠的重視。四、教學(xué)支持條件分析學(xué)生在初中已學(xué)過有關(guān)直角三角形的一些知識(shí)和有關(guān)任意三角形的一些知識(shí),學(xué)生在高中已學(xué)過必修4(包括三角函數(shù)與平面向量),學(xué)生已具備初步的數(shù)學(xué)建模能力,會(huì)從簡(jiǎn)單的實(shí)際問題中抽象出數(shù)學(xué)模型完成教學(xué)目標(biāo),是切實(shí)可行的。-A-C= 180186。=3982 abc===2R sinAsinBsinC正弦定理推論(1)a=2RsinA,b=2RsinB,c=2RsinCabcB=正弦定理推論(2)sinA=,sin,sinC=2R2R2R正弦定理:解決類型:(1)已知三角形的任意兩角與一邊,可求出另外一角和兩邊;(2)已知三角形的任意兩邊與其中一邊的對(duì)角,可求出另外一邊和兩角。二、問題與例題問題1:在Rt△ABC中,各邊、角之間存在何種數(shù)量關(guān)系? 問題2:這三個(gè)式子中都含有哪個(gè)邊長(zhǎng)??問題3:那么通過這三個(gè)式子,邊長(zhǎng)c有幾種表示方法??問題4:得到的這個(gè)等式,說明了在Rt△中,各邊、角之間存在什么關(guān)系? 問題5:那么能否把銳角三角形轉(zhuǎn)化為直角三角形來求證? 例1.(三)例題分析,加深理解例題:在△ABC中,已知C=,A=,CAC=2620m,求AB.(精確到1米)三、目標(biāo)檢測(cè)1.一個(gè)三角形的兩個(gè)內(nèi)角分別是30和45,如果45角所對(duì)的邊長(zhǎng)為8,那么30角所對(duì)邊的長(zhǎng)是2.在△ABC中,oo(1)已知A=75,B=45,c=,則a=,b=oooo(2)已知A=30,B=120,b=12,則a=,c=oo3.在△ABC中,b=oc=C=60,則A= ____________ o4.在△ABC中,b=3,c=B=30,則a=_____________ 5.在△ABC中,b=2asinB,則B+C=________________配餐作業(yè)一、基礎(chǔ)題(A組)在△ABC中,若a=,b=,A=300, 則c等于()A、2B、C、25或D、以上結(jié)果都不對(duì) 2.在△ABC中,一定成立的等式是()==bcosB==bcosA sinAcosBcosC==則△ABC為abcA.等邊三角形C.有一個(gè)內(nèi)角為30176。的等腰三角形4.△ABC中,∠A、∠B的對(duì)邊分別為a,b,且∠A=60176?!鰽BC中,若c=2,C=60176。13.為了測(cè)量上海東方明珠的高度,(精確到1m).oo第三篇:《
點(diǎn)擊復(fù)制文檔內(nèi)容
化學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1