【摘要】1.三角函數(shù)的圖象與性質(zhì)情景:前面我們學習了三角函數(shù)的誘導(dǎo)公式,我們是借助于單位圓推導(dǎo)出來的.思考:我們能否借助三角函數(shù)的圖象來推導(dǎo)或直接得出三角函數(shù)的一些性質(zhì)呢?1.“五點法”作正弦函數(shù)圖象的五個點是__________、________、________、________、________.答案:(0,0
2024-12-20 20:24
【摘要】課題:三角函數(shù)的圖象與性質(zhì)(3)班級:姓名:學號:第學習小組【學習目標】1.了解利用正切線畫出正切函數(shù)圖象的方法,能通過觀察正切函數(shù)圖象,利用類比思想歸納正切函數(shù)的性質(zhì);2.提升學生作圖能力,分析能力和解決問題的能力,進行數(shù)形結(jié)合思想和類比思想的滲透.【課前
2024-12-02 01:06
【摘要】任意角的三角函數(shù)任意角的三角函數(shù)(一)一、填空題1.當α為第二象限角時,|sinα|sinα-cosα|cosα|的值是________.2.角α的終邊經(jīng)過點P(-b,4)且cosα=-35,則b的值為________.3.已知sinθ2tanθ0,則角θ位于第___
2024-12-17 03:25
【摘要】第一章三角函數(shù)正切函數(shù)的圖象與性質(zhì)?α在第一象限時:?正弦線:sinα=MP0?余弦線:cosα=0M0?正切線:tanα=AT0α在第二象限時:正弦線:sinα=M’P’0余弦線:cosα=0M’0正切線:
2024-11-30 08:49
【摘要】第一章三角函數(shù)正余弦函數(shù)的圖象和性質(zhì)xy(1).列表(2).描點(3).連線6?3?2?32?65??67?34?32?35?611?2?021230121?23?21230021?23?1????2,0,sin??xxy描點法作函數(shù)圖象的主要步驟有什么?-
【摘要】第一章三角函數(shù)正余弦函數(shù)的圖象和性質(zhì)正弦、余弦函數(shù)的圖象和性質(zhì)x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx(x?R)定義域
2024-11-29 23:32
【摘要】同角三角函數(shù)關(guān)系(一)一、填空題1.若sinα=45,且α是第二象限角,則tanα=______.2.已知sinα=55,則sin4α-cos4α=________.3.已知α是第二象限角,tanα=-12,則cosα=________.4.已知sinαcosα=18且π4&l
2024-12-17 10:17
【摘要】三角函數(shù)的誘導(dǎo)公式(一)一、填空題1.sin585°的值為________.2.若n為整數(shù),則代數(shù)式nπ+αnπ+α的化簡結(jié)果是________.3.若cos(π+α)=-12,32πα2π,則sin(2π+α)=________.4.化簡:-α+α-π-
【摘要】三角函數(shù)的應(yīng)用一、填空題1.某人的血壓滿足函數(shù)式p(t)=120+20sin(160πt),其中p(t)為血壓(mmHg),t為時間(min),則此人每分鐘心跳次數(shù)是________.2.如圖所示,單擺從某點開始來回擺動,離開平衡位置O的距離scm和時間ts的函數(shù)關(guān)系式為s=6sin??????2πt+π6,那么
2024-12-17 10:16
【摘要】)sin(????xA例1:作函數(shù)和的簡圖,并說明它們與函數(shù)的關(guān)系。xysin2?xysin21?xysin?解:作圖由例1可以看出,在函數(shù)
2025-01-15 16:32
【摘要】正切函數(shù)的性質(zhì)與圖像2020/12/24研修班2請問:學習正弦函數(shù)、余弦函數(shù)之后你積累了那些經(jīng)驗?單位圓技法平移正弦線、余弦線誘導(dǎo)公式、函數(shù)性質(zhì)畫函數(shù)圖象五點法描點法????????一、回顧2020/12/24研修班3二、正切函數(shù)的性質(zhì)1、周期性ZkπkπxR
2024-11-29 12:03
【摘要】三角函數(shù)的誘導(dǎo)公式(二)一、填空題1.已知f(sinx)=cos3x,則f(cos10°)=________.2.若sin(3π+α)=-12,則cos??????7π2-α=________.3.已知sin??????α-π4=13,則cos??????π4+α=________.
【摘要】正弦函數(shù)、余弦函數(shù)的圖像正弦線MP余弦線OM正切線AT,,的幾何意義是什么?sinaacosatan:yxxO-1?PMTA(1,0)1-102??23??22?6
【摘要】任意角的三角函數(shù)(1)【學習目標】1.掌握任意角三角函數(shù)的定義,并能借助單位圓理解任意角三角函數(shù)的定義2.會用三角函數(shù)線表示任意角三角函數(shù)的值3.掌握正弦、余弦、正切函數(shù)的定義域和這三種函數(shù)的值在各象限的符號【學習重點、難點】任意角的正弦、余弦、正切的定義【自主學習】一、復(fù)習舊知,導(dǎo)入新課在初
【摘要】任意角的三角函數(shù)一、教學目標1、知識目標:借助單位圓理解任意角的三角函數(shù)(正弦、余弦、正切)的定義,根據(jù)定義探討出三角函數(shù)值在各個象限的符號,掌握同一個角的不同三角函數(shù)之間的關(guān)系。2、能力目標:能應(yīng)用任意角的三角函數(shù)定義求任意角的三角函數(shù)值。3、情感目標:培養(yǎng)數(shù)形結(jié)合的思想。二、教材分析1、教學重點:理解任意角三角函數(shù)(正弦、余弦、正切)的定義。2、教學難點:從函
2025-04-26 12:39