freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

新課程高中數(shù)學(xué)教學(xué)設(shè)計與案例-展示頁

2024-10-21 02:12本頁面
  

【正文】 必須經(jīng)過多次反復(fù)的試行和修改,注重形成性評價,把評價的重點放在學(xué)生自身知識、技能、體能、情感、態(tài)度、習(xí)慣和能力的發(fā)展上。不管選擇什么教學(xué)內(nèi)容、采用何種方法,只要有助于達成學(xué)習(xí)目標(biāo)就行;)體育學(xué)習(xí)目標(biāo)是用可觀察的行為術(shù)語來描述的,這就使師生雙方對體育學(xué)習(xí)產(chǎn)生的結(jié)果都很清楚,便于學(xué)習(xí)者主動參與體育學(xué)習(xí)過程,并使體育教師對學(xué)習(xí)是否發(fā)生進行準(zhǔn)確判斷,為評價學(xué)生的體育學(xué)習(xí)提供可測定的標(biāo)準(zhǔn);對體育學(xué)習(xí)者的了解是教學(xué)設(shè)計成功的必要因素。創(chuàng)造性地分析、解決體育教學(xué)問題是系統(tǒng)理論的核心內(nèi)容;體育教學(xué)目標(biāo)的確定必須建立在對整個教學(xué)體系環(huán)境的分析上。這些新變化主要表現(xiàn)在以下幾個方面:強調(diào)促進學(xué)生健康而全面的發(fā)展、重視激發(fā)學(xué)生的運動興趣、關(guān)注學(xué)生主體地位的確立、重視學(xué)生的個體差異和不同需求、從注重教學(xué)的結(jié)果轉(zhuǎn)向注重教學(xué)過程。案例教學(xué)法: 案例教學(xué)法從廣義上來說,可界定為通過對一個具體教育情景的描述,引導(dǎo)學(xué)生對這些特殊情景進行討論的一種教學(xué)方法。案例:簡單地說,一個案例就是一個實際情景的描述,在這個情景中,包含有一個或多個疑難問題,同時也可能包含有解決問題的方法。教案:它是根據(jù)學(xué)期教學(xué)工作計劃的安排和要求,參照單元教學(xué)工作計劃,并結(jié)合學(xué)生、場地、器材、組織教法、學(xué)法等實際情況制訂的一節(jié)課的具體實施方案,它反映出教師對一節(jié)課的教學(xué)思想、業(yè)務(wù)水平、教學(xué)技巧和工作態(tài)度。水平(學(xué)段)計劃制訂的基本要求: 考慮各領(lǐng)域目標(biāo)實現(xiàn)的整體性、考慮內(nèi)容標(biāo)準(zhǔn)和教學(xué)內(nèi)容的連貫性、熟悉內(nèi)容標(biāo)準(zhǔn)目標(biāo)之間的關(guān)系、遵循選擇教學(xué)內(nèi)容的基本要求、按“實踐性、靈活性、綜合性”原則安排教學(xué)內(nèi)容的時數(shù)、對內(nèi)容標(biāo)準(zhǔn)進行統(tǒng)籌安排。設(shè)置教學(xué)目標(biāo)的要求:深刻理解課程性質(zhì),正確認識體育與健康課程的目標(biāo)體系;五個目標(biāo)并重,充分體現(xiàn)身體練習(xí)為主的三維健康觀;目標(biāo)制訂要具體、明確、有層次和可操作性;學(xué)校設(shè)置教學(xué)目標(biāo)時,應(yīng)考慮主體發(fā)展目標(biāo)。同時,它也是一個系統(tǒng)計劃的過程,應(yīng)用系統(tǒng)方法研究、探索體育教學(xué)系統(tǒng)中各個要素(如體育教師、學(xué)生、教學(xué)內(nèi)容、教學(xué)條件、教學(xué)目標(biāo)、教學(xué)媒體、教學(xué)組織形式、教學(xué)活動)之間的本質(zhì)聯(lián)系,并通過一套具體的操作程序來協(xié)調(diào)、配置,使各要素有機結(jié)合以完成體育教學(xué)系統(tǒng)的功能。問答形2011年9月16日第三篇:8新課程教學(xué)設(shè)計與案例教學(xué)一、基本概念題體育教學(xué)設(shè)計: 體育教學(xué)設(shè)計是運用系統(tǒng)方法分析體育教學(xué)的問題,確定體育教學(xué)目標(biāo),建立解決體育教學(xué)問題的策略方法,試行解決方案,評價試行結(jié)果和對方案進行修改的過程。發(fā)現(xiàn)學(xué)生思想的火花,激發(fā)學(xué)生思考,培養(yǎng)學(xué)生的創(chuàng)新思維,這正是我們追求的教學(xué)目標(biāo)。學(xué)生紛紛投入到問題的研究,最后由學(xué)生提出運用函數(shù)與反函數(shù)的關(guān)系,根據(jù)指數(shù)函數(shù)的性質(zhì)直接映射出對數(shù)函數(shù)的性質(zhì)。大多數(shù)同學(xué)類比指數(shù)函數(shù)性質(zhì)的研究方法,觀察圖形特征,總結(jié)出對數(shù)函數(shù)的一般性質(zhì)。四、教學(xué)設(shè)計應(yīng)有利于讓學(xué)生學(xué)會生存,培養(yǎng)學(xué)生的創(chuàng)新意識教學(xué)中教師要精心設(shè)計教學(xué),不應(yīng)停留在簡單的變式和膚淺的式上,而應(yīng)把數(shù)學(xué)知識方法貫徹到每一次探索活動中去,使學(xué)生在“觀察、聯(lián)想、類比、歸納、猜想和證明”等一系列探究過程中,體驗到成功的快樂,從而激發(fā)學(xué)生的創(chuàng)新欲望,體會到數(shù)學(xué)思想方法的作用。在交流與討論中,能夠澄清認識,糾正錯誤。由此例可看出,這種模式的一個關(guān)鍵點就是圍繞著學(xué)生日常生活來展開的:由學(xué)生身邊的事所引出的數(shù)學(xué)問題使學(xué)生體會到數(shù)學(xué)與生活的緊密和諧的關(guān)系,樸素的問題情景自然地對學(xué)生產(chǎn)生一種情感上的親和力和感召力,可以讓他們真正應(yīng)用數(shù)學(xué),并引導(dǎo)他們學(xué)會做事。二、教學(xué)設(shè)計應(yīng)有利于讓學(xué)生學(xué)會做事,加強應(yīng)用意識的培養(yǎng)“要求學(xué)生統(tǒng)計自己家庭一周內(nèi)丟棄的塑料袋個數(shù),并依據(jù)所收集的數(shù)據(jù)展開討論。【作業(yè)】習(xí)題22A組第6題總結(jié)歸納學(xué)習(xí)內(nèi)容,安排適當(dāng)?shù)恼n后練習(xí)第二篇:新課程高中數(shù)學(xué)教學(xué)設(shè)計與反思【中學(xué)數(shù)學(xué)教案】新課程高中數(shù)學(xué)教學(xué)設(shè)計與反思鹽津一中 張才順在新課程教學(xué)中,我認為應(yīng)注意以下四個問題:一、教學(xué)設(shè)計應(yīng)有利于讓學(xué)生學(xué)會學(xué)習(xí),發(fā)揮學(xué)生的主體作用在教學(xué)過程中,要根據(jù)不同學(xué)習(xí)內(nèi)容,使學(xué)習(xí)成為在教師指導(dǎo)下自動的、建構(gòu)過程。讓學(xué)生體會定理的現(xiàn)實意義與重要性及解決立體幾何問題的重要思想方法——化歸思想【課堂練習(xí)】 已知:α∩=CD,β∩γ=AB,AB∥α,α∩γ=EF, 求證:CD∥EF選取幾份有代表性的做法,利用投影儀,講評練習(xí),反饋學(xué)習(xí)效果。通過練習(xí)再次深化對定理的理解。(3)如果直線a、b和平面α滿足a∥α,b∥α,那么a∥b。(不局限只有引平行線的方法)二、判斷題(1)如果a、b是兩條直線,且a∥b,那么a平行于經(jīng)過b的任何平面。深化學(xué)生對定理的理解,明確該定理給出了一種作平行線的重要方法。續(xù)表教師活動學(xué)生活動設(shè)計意圖【剖析定理】(1)證明定理;(2)分析定理成立的條件和結(jié)論;(3)指導(dǎo)學(xué)生閱讀課本60頁倒數(shù)第一段的內(nèi)容。(2)由上面特殊例子的啟發(fā),學(xué)生逐漸形成對問題答案的猜想,隨教師的引導(dǎo),證明猜想的正確性。(1)根據(jù)長方體的知識,學(xué)生能夠找到直線AC與AC平行。分析:因為AC∥面ABCD,所以AC與這個面內(nèi)的直線EF沒有公共點,由大家的這個方法做出直線EF,就使得EF與AC共面,故EF∥AC。分析:AC與AC這兩條平行直線共面,同在面AACC內(nèi),可見AC是過AC的平面AACC與面ABCD的交線。通過學(xué)生的動手實驗,得出問題的結(jié)論,提高學(xué)生的探索問題的熱情。(1)學(xué)生動手做實驗,并觀察得出問題的結(jié)論:與平面平行的直線并不與這個平面內(nèi)的所有直線都平行?!驹O(shè)問】(1)提出本節(jié)《思考》的問題(1):如果一條直線與平面平行,那么這條直線是否與這個平面內(nèi)的所有直線都平行? 1 引導(dǎo)學(xué)生做小實驗:利用筆和桌面做實驗,把一支筆放置到與桌面所在平面平行的位置上,把另一支筆放置在桌面,筆所在的直線代表桌面所在平面上的一條直線,移動桌面上的筆到不同的位置,觀察兩筆所在直線的位置關(guān)系。思考問題,進入新課的學(xué)習(xí)。溫故知新,為新課的學(xué)習(xí)做準(zhǔn)備。(人教版)復(fù)習(xí)相關(guān)知識并由現(xiàn)實問題引入課題引導(dǎo)學(xué)生探索、發(fā)現(xiàn)直線與平面平行的性質(zhì)定理 分析定理,深化定理的理解 直線與平面平行的性質(zhì)定理的應(yīng)用 學(xué)生練習(xí),反饋學(xué)習(xí)效果 教師活動學(xué)生活動設(shè)計意圖【復(fù)習(xí)】以提問的形式引導(dǎo)學(xué)生回顧相關(guān)的知識:線線、線面的位置關(guān)系及判定線面平行的方法。第一篇:新課程高中數(shù)學(xué)教學(xué)設(shè)計與案例新課程高中數(shù)學(xué)教學(xué)設(shè)計與案例李代友直線與平面平行的性質(zhì)(1)通過教師的適當(dāng)引導(dǎo)和學(xué)生的自主學(xué)習(xí),使學(xué)生由直觀感知、獲得猜想,經(jīng)過邏輯論證,推導(dǎo)出直線與平面平行的性質(zhì)定理,并掌握這一定理;(2)通過直線與平面平行的性質(zhì)定理的實際應(yīng)用,讓學(xué)生體會定理的現(xiàn)實意義與重要性;(3)通過命題的證明,讓學(xué)生體會解決立體幾何問題的重要思想方法——化歸思想,培養(yǎng)、提高學(xué)生分析、解決問題的能力。重點:直線與平面平行的性質(zhì)定理;難點:直線與平面平行性質(zhì)定理的探索及P61例3。思考并回答問題?!疽搿?1)提出例3給出的實際問題,讓學(xué)生稍作思考;(2)點明該問題解決的關(guān)鍵是由條件“棱BC平行于面AC”如何在木料表面畫線,使得工人師傅按照畫線加工出滿足要求的工件;(3)引入課題——在我們學(xué)習(xí)了《直線與平面平行的性質(zhì)》這一節(jié)課之后,我們就知道如何解決這個實際問題了。通過實際例子,引發(fā)學(xué)生的學(xué)習(xí)興趣,突出學(xué)習(xí)直線和平面平行性質(zhì)的現(xiàn)實意義。(2)一條直線與平面平行,那么這條直線與平面內(nèi)的直線有哪些位置關(guān)系? 分析:a∥αa與α無公共點 a與α內(nèi)的任何直線都無公共點 a與α內(nèi)的直線是異面直線或平行直線。(2)學(xué)生由實驗結(jié)果猜想問題的答案,再由教師的引導(dǎo)進行嚴(yán)謹?shù)姆治觯_定猜想的正確性。續(xù)表教師活動學(xué)生活動設(shè)計意圖【探究】一條直線與一個平面平行,在什么條件下,平面內(nèi)的直線與這條直線平行? 講述:與平面平行的直線,和平面內(nèi)的直線或是異面直線或是平行直線,它們有一個區(qū)別是異面直線不共面,而平行直線共面,那么如何利用這個不同點,尋找這些平行直線呢? 長方體ABCDAB(yǎng)CD中,AC平行于面ABCD,請在面ABCD內(nèi)找出一條直線與AC平行。(2)在面ABCD內(nèi),除了AC還有直線與AC平行嗎?如果有,可以通過什么方法找到? 利用課件演示AC任意作一平面AEFC與面ABCD相交于線EF,驗證學(xué)生的猜想。學(xué)生隨著教師的引導(dǎo),思考問題,回答問題。隨教師的引導(dǎo),發(fā)現(xiàn)AC的特殊位置關(guān)系。以長方體為載體,引導(dǎo)學(xué)生猜想問題成立的條件,推導(dǎo)出定理。要求學(xué)生認真聽教師的分析,看定理的證明過程,閱讀和理解課本60頁倒數(shù)第一段的內(nèi)容?!眷柟叹毩?xí)】一、提出本節(jié)開始提出的問題(2),讓學(xué)生自由發(fā)言。(2)如果直線a和平面α滿足a∥α,那么a與α內(nèi)的任何直線平行。學(xué)生自由舉手發(fā)言,說
點擊復(fù)制文檔內(nèi)容
規(guī)章制度相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1