【摘要】§平面向量的數(shù)量積【學(xué)習(xí)目標(biāo)、細(xì)解考綱】的意義;體會(huì)數(shù)量積與投影的關(guān)系。。,可以處理有關(guān)長(zhǎng)度、角度和垂直問題?!局R(shí)梳理、雙基再現(xiàn)】ab與的夾角。______向量ab與,我們把______________叫ab與的數(shù)量積。(或________)記作___________即a
2024-12-14 08:37
【摘要】課題坐標(biāo)的標(biāo)示及運(yùn)算教學(xué)目標(biāo)知識(shí)與技能了解平面向量的正交分解,掌握向量的坐標(biāo)表示.過程與方法掌握兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.情感態(tài)度價(jià)值觀正確理解向量坐標(biāo)的概念,要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)分開來.重點(diǎn)溝通向量“數(shù)”與“形”的特征,使向
2024-12-01 17:32
【摘要】§2.平面向量的基本定理【學(xué)習(xí)目標(biāo)、細(xì)解考綱】;.【知識(shí)梳理、雙基再現(xiàn)】:如果1e?,2e?是同一平面內(nèi)兩個(gè)的向量,a?是這一平面內(nèi)的任一向量,那么有且只有一對(duì)實(shí)數(shù),21,??使。其中,不共線的這兩個(gè)向量,1e?2e?叫做表示這一平
2024-12-12 13:51
【摘要】平面向量的坐標(biāo)運(yùn)算學(xué)習(xí)目標(biāo):1.了解平面向量的正交分解,掌握向量的坐標(biāo)表示.2.掌握兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.3.正確理解向量坐標(biāo)的概念,要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)分開來.【學(xué)法指導(dǎo)】1.向量的正交分解是把一個(gè)向量分解為兩個(gè)互相垂直的向量,是向量坐標(biāo)表示的理論依據(jù).向量的坐標(biāo)表示
2024-12-01 17:41
【摘要】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個(gè)點(diǎn)都可用一對(duì)有序?qū)崝?shù)(即它的坐標(biāo))表示,如點(diǎn)A(x,y)等.思考:對(duì)于每一個(gè)向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個(gè)向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-17 10:15
【摘要】【金榜教程】2021年高中數(shù)學(xué)平面向量的坐標(biāo)檢測(cè)試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)a=(2,4),b=(x,1),當(dāng)a+b與a-b共線時(shí),x值為()(A)13(B)1(C)12(D)14ABCD中,
2024-12-12 23:42
2024-12-21 03:42
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運(yùn)算學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.下列說法正確的有()①向量的坐標(biāo)即此向量終點(diǎn)的坐標(biāo).②位置不同的向量其坐標(biāo)可能相同.③一個(gè)向量的坐標(biāo)等于它的終點(diǎn)坐標(biāo)減去它的始點(diǎn)坐標(biāo).④相等的向量坐標(biāo)一定相同.A.1個(gè)B.2個(gè)
【摘要】§2.平面向量的概念及幾何表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】了解向量豐富的實(shí)際背景,理解平面向量的概念及向量的幾何表示?!局R(shí)梳理、雙基再現(xiàn)】1、向量的實(shí)際背景有下列物理量:位移,路程,速度,速率,力,功,其中位移,力,功都是既有_______________又有_________________的量.路程,
【摘要】平面向量的坐標(biāo)運(yùn)算(二)一、填空題1.已知三點(diǎn)A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點(diǎn)坐標(biāo)是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
【摘要】§平面幾何的向量方法【學(xué)習(xí)目標(biāo)、細(xì)解考綱】體會(huì)向量在解決問題中的應(yīng)用,培養(yǎng)運(yùn)算及解決問題的能力?!拘≡嚿硎?、輕松過關(guān)】1、ABCD的三個(gè)頂點(diǎn)筆標(biāo)分別為A(-2,1),B(-1,3),C()則頂點(diǎn)D的坐標(biāo)為()。A.(2,1)B.(2,2)C.(1,2
2024-12-12 03:59
【摘要】【金榜教程】2021年高中數(shù)學(xué)試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)a=(3,1),b=(x,-3),且a⊥b,則實(shí)數(shù)x的值為()(A)-9(B)9(C)1(D)-12.(2021·遼寧高考)已知向量a=(2,1),b
2024-12-15 03:14
【摘要】§相等向量與共線向量【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1理解相等向量與共線向量的概念2由向量相等的定義,理解平行向量與共線向量是等價(jià)的。【知識(shí)梳理、雙基再現(xiàn)】1相等向量是_________________________向量a與b相等,記作_______________。任意兩個(gè)相等的非零向量,都可用一條有向線段來表示,并且
【摘要】121312721722或72浙江省黃巖中學(xué)高中數(shù)學(xué)《平面向量數(shù)量積的坐標(biāo)表示模夾角第二課時(shí)》練習(xí)題新人教版必修4【學(xué)習(xí)目標(biāo)、細(xì)解考綱】。合問題?!局R(shí)梳理、雙基再現(xiàn)】1.a=2b=2a,b且夾角為450,使b-aa?與垂直,則?=______2.a=(
【摘要】Oxya引入:,點(diǎn)A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-29 15:05