【摘要】冀教版八年級(jí)下冊(cè)數(shù)學(xué)中心對(duì)稱與中心對(duì)稱圖形教學(xué)設(shè)計(jì)第2課時(shí)教學(xué)設(shè)計(jì)思路:,設(shè)計(jì)為畫出線段和等邊三角形以它的中心為對(duì)稱中心的對(duì)稱圖形,這樣處理既鞏固了上節(jié)課的知識(shí),同時(shí)引出中心對(duì)稱圖形的有關(guān)定義.,采用“操作—思考—總結(jié)—應(yīng)用”的探究思路,逐層推進(jìn),培養(yǎng)學(xué)生的探究能力.教學(xué)目標(biāo):A層:發(fā)現(xiàn)
2024-12-20 23:42
【摘要】(1)這些圖形有什么共同的特征?都是旋轉(zhuǎn)對(duì)稱圖形。(2)這些圖形的不同點(diǎn)在哪?分別繞旋轉(zhuǎn)中心旋轉(zhuǎn)了多少度?第一個(gè)圖形的旋轉(zhuǎn)角度為120°或240°,第二個(gè)圖形的旋轉(zhuǎn)角度為72°或144°或216°或288°。后三個(gè)圖形的旋轉(zhuǎn)角度都為180
2025-08-10 17:30
【摘要】中心對(duì)稱圖形義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書九年級(jí)上冊(cè)一教材的地位與作用這一節(jié)課與圖形的三種運(yùn)動(dòng)(平移、翻折、旋轉(zhuǎn))之一的“旋轉(zhuǎn)”有著不可分割的聯(lián)系,通過(guò)對(duì)這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生認(rèn)識(shí)圖形的三種基本運(yùn)動(dòng)中“旋轉(zhuǎn)”在幾何知識(shí)中的重要體現(xiàn),同時(shí)也完善了初中部分對(duì)“對(duì)稱圖形”(軸對(duì)稱圖形、中心對(duì)稱圖形)的知識(shí)講授,
2025-07-27 07:20
【摘要】中心對(duì)稱圖形(1)觀察下列圖形看看它們有沒有共同的特征?(2)你能將下圖中的“風(fēng)車”繞其上的一點(diǎn)旋轉(zhuǎn)180度,使旋轉(zhuǎn)前后的圖形完全重合嗎?正六邊形呢?A上圖繞中心旋轉(zhuǎn)180度與原圖重合中心對(duì)稱圖形的定義?在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形相互重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。這個(gè)點(diǎn)叫做
2025-08-01 03:41
【摘要】中心對(duì)稱(第1課時(shí))九年級(jí)上冊(cè)?學(xué)習(xí)目標(biāo):1.知道中心對(duì)稱的概念,能正確表述中心對(duì)稱的性質(zhì);2.會(huì)畫一個(gè)圖形關(guān)于某一點(diǎn)中心對(duì)稱的對(duì)稱圖形.1.了解中心對(duì)稱的概念問(wèn)題1(1)如圖,把其中一個(gè)圖形繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)??jī)蓚€(gè)圖形能夠完全重合在一起.O
2024-12-03 00:10
【摘要】(1)這些圖形有什么共同的特點(diǎn)?都是旋轉(zhuǎn)對(duì)稱圖形。(2)這些圖形分別繞旋轉(zhuǎn)中心旋轉(zhuǎn)多少度后與自身重合?第一個(gè)圖形的旋轉(zhuǎn)角度為120°或240°第二個(gè)圖形的旋轉(zhuǎn)角度為72°或144°或216°或288°第三個(gè)圖形的旋轉(zhuǎn)角度為90°或180°或2
2024-11-24 17:03
【摘要】中考復(fù)習(xí)時(shí)刻準(zhǔn)備著!周萬(wàn)留圖形的軸對(duì)稱和中心對(duì)稱第五章第一課時(shí)由一個(gè)圖形變?yōu)榱硪粋€(gè)圖形,并使兩個(gè)圖形關(guān)于某一條直線成軸對(duì)稱.這樣的圖形變換叫做圖形的軸對(duì)稱變換.軸對(duì)稱變換性質(zhì)對(duì)稱軸__________連結(jié)兩個(gè)對(duì)稱點(diǎn)之間的線段,軸對(duì)稱變換不改變圖形的______和______垂直平分
2024-10-27 12:54
【摘要】中心對(duì)稱與中心對(duì)稱圖形小雄中學(xué)數(shù)學(xué)組張安明一.知識(shí)回顧:把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)1800,如果它能與另一個(gè)圖形重合,就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱.2.中心對(duì)稱的性質(zhì):⑴關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形⑵關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中
2024-11-24 17:37
【摘要】(1)把其中一個(gè)圖案繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?重合重合觀察(2)線段AC,BD相交于點(diǎn)O,OA=OC,OB=△OCD繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?ACBADE像這樣把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度,如果它能夠和另一個(gè)圖
2024-11-21 21:32
【摘要】2THANKS
2025-03-19 02:03
【摘要】照中:閆傳江生活中有許多美麗的圖案你發(fā)現(xiàn)了嗎?東方明珠多么漂亮的建筑??!創(chuàng)設(shè)情境o(2)圓(4)正方形(1)線段(3)平行四邊形AB觀察將下面的圖形繞O點(diǎn)旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?OOO
2025-05-07 22:23
【摘要】?中心對(duì)稱的兩個(gè)圖形有什么性質(zhì)?。(1)平行四邊形的對(duì)角頂點(diǎn)關(guān)于對(duì)角線交點(diǎn)對(duì)稱。(2)平行四邊形的對(duì)邊關(guān)于對(duì)角線交點(diǎn)對(duì)稱。(3)平行四邊形是軸對(duì)稱圖形復(fù)習(xí)與引入如圖所示的兩個(gè)圖形成中心對(duì)稱,你能找到對(duì)稱中心嗎?PABDCEFGH
2024-12-20 15:18
【摘要】初中數(shù)學(xué)八年級(jí)上冊(cè)(蘇科版)思考⑴軸對(duì)稱與軸對(duì)稱圖形有怎樣的聯(lián)系與區(qū)別?⑵比照軸對(duì)稱與軸對(duì)稱圖形的關(guān)系,你認(rèn)為什么樣的圖形是中心對(duì)稱圖形?你對(duì)線段有哪些認(rèn)識(shí)?ABADBC你對(duì)平行四邊形有哪些認(rèn)識(shí)?把一個(gè)平面圖形繞某一點(diǎn)旋轉(zhuǎn)1800,如果它能夠與原來(lái)圖形重合,那么這個(gè)圖形叫做中心
2024-12-12 03:54
【摘要】第一篇:中心對(duì)稱和中心對(duì)稱圖形數(shù)學(xué)教案 中心對(duì)稱和中心對(duì)稱圖形數(shù)學(xué)教案 1.中心對(duì)稱 把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn),如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心,...
2024-11-15 01:10
【摘要】THANKS