【摘要】立體幾何中的向量方法(2)【學習目標】1.掌握利用向量運算解幾何題的方法,并能解簡單的立體幾何問題;2.掌握向量運算在幾何中求兩點間距離和求空間圖形中的角度的計算方法.【重點難點】利用向量運算解幾何題【學習過程】一、自主預習(預習教材P105~P107,找出疑惑之處.復習1:已知1ab??,1
2024-12-01 17:32
【摘要】立體幾何中的向量方法(1)【學習目標】1.掌握直線的方向向量及平面的法向量的概念;2.掌握利用直線的方向向量及平面的法向量解決平行、垂直、夾角等立體幾何問題.【重點難點】直線的方向向量及平面的法向量【學習過程】一、自主預習(預習教材P102~P104,找出疑惑之處)復習1:
2024-12-01 20:38
【摘要】空間“角度”問題法門高中姚連省一、復習引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;(3)把向量的運算結果“翻譯”成相應的幾何
2024-11-30 13:29
【摘要】1法門高中姚連省2一、復習引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉化為向量問題;(化為向量問題)(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;
【摘要】1法門高中姚連省2前面,我們把平面向量推廣到空間向量向量漸漸成為重要工具立體幾何問題(研究的基本對象是點、直線、平面以及由它們組成的空間圖形)從今天開始,我們將進一步來體會向量這一工具在立體幾何中的應用.
【摘要】l的方向向量,平面α的法向量分別是a=(3,2,1),u=(-1,2,-1),則l與α的位置關系是()A.l⊥αB.l∥αC.l與α相交但不垂直D.l∥α或l?α解析:選D.∵a·u=-3+4-1=0,∴a⊥u,
2024-12-17 06:40
【摘要】l的方向向量與平面α的法向量的夾角等于120°,則直線l與平面α所成的角等于()A.120°B.60°C.30°D.以上均錯答案:CABCDA1B1C1D1中,AB=2,BC=2,DD1=3,則AC與BD1所成角的
【摘要】ABDClβαDCBADCBAE立體幾何中的向量方法——二面角【學習目標】能用向量方法解決二面角的計算問題.【自主學習】1.二面角的大小是用它的平面角來度量的,求二面角關鍵是確定二面角的平面角.探究,二面角α-l-β,AB?α,CD?β,AB⊥
2024-12-01 23:24
【摘要】ABCA1B1C1Myz3.2立體幾何中的向量方法——平行與垂直(1)【學習目標】1.理解直線的方向向量和平面的法向量;2.會用待定系數法求平面的法向量;3.能用向量方法證明空間線線、線面、面面的平行與垂直關系.【自主學習】1、點的位置向量:2、直線的方向向量:3、平面的
2024-12-01 23:25
【摘要】立體幾何中的向量方法(1)____之證明【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐。【學習目標】1.掌握直線的方向向量及平面的法向量的概念;2.掌握利用直線的方向向量及平面的法向量解決平行、垂直、夾角等立體幾何問題.【重點】掌握直線
2024-11-30 16:52
【摘要】立體幾何中的向量方法(1)____之求角【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐?!緦W習目標】1.掌握利用向量運算解幾何題的方法,并能解簡單的立體幾何問題;2.掌握向量運算在幾何中求兩點間距離和求空間圖形中的角度的計算方法.【重點】
【摘要】ZPZ空間“距離”問題一、復習引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;(3)把向量的運算結果“翻譯”成相應的幾何意義。(化為向量
2024-11-29 05:47
【摘要】ZPZ空間“角度”問題設直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復習引入①方向向量法將二面角轉化為二面角的兩個面的
【摘要】量方法(一)課件新人教版(選修2-1)平面向量空間向量推廣到立體幾何問題(研究的基本對象是點、直線、平面以及由它們組成的空間圖形)向量漸漸成為重要工具從今天開始,我們將進一步來體會向量這一工具在立體幾何中的應用.前面,我們把。+=,使,實數對共面的
2024-12-03 02:27
【摘要】空間“綜合”問題向量法解立體幾何問題的優(yōu)點:1.思路容易找,甚至可以公式化;一般充分結合圖形發(fā)現向量關系或者求出(找出)平面的法向量、直線的方向向量,利用這些向量借助向量運算就可以解決問題.2.不需要添輔助線和進行困難的幾何證明;3.若坐標系容易建立,更是水到渠成.復習引入如圖,已知: