【摘要】例1、如圖,,兩地之間隔著一個水塘,現(xiàn)選擇另一個點,測得,求,兩地之間的距離(精確到1)。ABC182,126,63oCAmCBmACB????ABm(見教材第14頁例2)ABCA
2024-12-12 12:35
【摘要】應(yīng)用舉例解決有關(guān)測量距離的問題1、正弦定理:2、余弦定理:二、應(yīng)用:一、定理內(nèi)容:求三角形中的某些元素解三角形實例講解分析:在本題中直接給出了數(shù)學(xué)模型(三角形),要求A、B間距離,相當于在三角形中求某一邊長?想一想例1、如下圖,設(shè)A、B兩點在河的兩岸,要測量兩點之間的距離
2024-11-22 22:29
【摘要】第一篇:高二數(shù)學(xué)正弦定理強化訓(xùn)練 高二數(shù)學(xué)正弦定理強化訓(xùn)練 △ABC中,b=8,c=8,S△ABC=3,則∠A等于() 或或120o△ABC中,若a=2bsinA,則∠B為() 3...
2024-10-28 16:46
【摘要】正弦定理、余弦定理的應(yīng)用(2)例1、自動卸貨汽車的車箱采用液壓機構(gòu)。設(shè)計時需要計算油泵頂杠BC的長度(如圖所示)。已知車箱的最大仰角為,油泵頂點B與車箱支點A之間的距離為,AB與水平線之間的夾角為,AC長為,計算BC的長(保留三個有效數(shù)字)。?60'206?
2025-07-28 20:47
【摘要】例3AB是底部B不可到達的一個建筑物,A為建筑物的最高點,設(shè)計一種測量建筑物高度AB的方法分析:由于建筑物的底部B是不可到達的,所以不能直接測量出建筑物的高。由解直角三角形的知識,只要能測出一點C到建筑物的頂部A的距離CA,并測出由點C觀察A的仰角,就可以計算出建筑物的高。所以應(yīng)該設(shè)法借助解三角形的知識測出CA的長。)
2024-08-31 01:09
【摘要】第八章直線和平面三垂線定理這是偶然的巧合,還是必然?A?aOPPO⊥a?A?aOP已知PA、PO分別是平面?的垂線、斜線,AO是PO在平面?上的射影。a??,a⊥AO。求證:a⊥PO平面內(nèi)的一條直線,如果和
2024-11-21 08:13
【摘要】數(shù)學(xué)家歐拉歐拉,瑞士數(shù)學(xué)家,歐拉是科學(xué)史上最多產(chǎn)的一位杰出的數(shù)學(xué)家,他從19歲開始發(fā)表論文,直到76歲,他一生共寫下了886本書籍和論文,其中在世時發(fā)表了700多篇論文。彼得堡科學(xué)院為了整理他的著作,整整用了47年。在他雙目失明后的17年間,也沒有停止對數(shù)學(xué)的研究,口述了好幾本書和400余篇的論文。
2024-11-21 03:30
【摘要】相交弦定理2020/12/19提問?怎樣證明四條線段成比例??答:利用相似三角形或平行線分線段成比例定理。?怎樣證明兩條線段之積等于另兩條線段之積?答:化為比例式證明2020/12/19已知:AB和CD是圓O的弦,AB和CD交于點P,求證:PA*PB=PC
2024-11-24 16:42
【摘要】北師大版高中數(shù)學(xué)必修五正弦定理、余弦定理的應(yīng)用遼寧省北票市保國學(xué)校叢日艷教學(xué)目的:1進一步熟悉正、余弦定理內(nèi)容;2能夠應(yīng)用正、余弦定理進行邊角關(guān)系的相互轉(zhuǎn)化;3能夠利用正、余弦定理判斷三角形的形狀;4能夠利用正、余弦定理證明三角形中的三角恒等式教學(xué)重點:利用正、余弦定理進行邊角互換時的轉(zhuǎn)化方向教學(xué)難點:三角函數(shù)公式變形與正、余弦定理的聯(lián)系
2025-07-07 04:35
【摘要】正弦定理復(fù)習(xí)三角形中的邊角關(guān)系1、角的關(guān)系2、邊的關(guān)系3、邊角關(guān)系大角對大邊(一)三角形中的邊角關(guān)系(二)直角三角形中的邊角關(guān)系(角C為直角)1、角的關(guān)系2、邊的關(guān)系3、邊角關(guān)系探索:直角三角形的邊角關(guān)系式對任意三角形是否成立?正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等,即
2024-11-21 05:06
【摘要】§動能定理及其應(yīng)用知識精要一?動能:物體由于運動而具有的能量叫做動能.:.:焦耳(J),1J=1N·m=1kg·m2/s2.標量,只有正值,沒有負值.,也具有相對性,因為v為瞬時速度,且與參考系的選擇有關(guān),一般以地
2024-11-21 01:51
【摘要】正弦定理和余弦定理的應(yīng)用知識點:1、正弦定理:.2、正弦定理的變形公式:①,,;②,,;③;④.3、三角形面積公式:.4、余弦定理:在中,有,,.5、余弦定理的推論:,,.6、設(shè)、、是的角、、的對邊,則:①若,則;②若,則;③若,則.典型例題:解:,由正弦定理得答:(略)1、如圖,設(shè)A,B兩點在河的兩岸,一測量者在A點的同側(cè),在A所在的河岸邊選
2025-07-07 05:52
【摘要】§ 正弦定理、余弦定理應(yīng)用舉例在三角形的6個元素中要已知三個(除三角外)才能求解,常見類型及其解法如表所示.已知條件應(yīng)用定理一般解法一邊和兩角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b與c.在有解時只有一解兩邊和夾角(如a,b,C)余弦定理正弦定理由余弦定理求第三邊c
2025-07-07 04:30
【摘要】數(shù)學(xué):正弦函數(shù)的圖像和性質(zhì)(第二課時)課件ppt(新人教A版必修四)正弦、余弦函數(shù)的圖象和性質(zhì)x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx
2024-11-21 01:54
【摘要】第一篇:數(shù)學(xué):正弦定理、余弦定理的應(yīng)用教案(蘇教版必修5) 您身邊的志愿填報指導(dǎo)專家 第5課時:§正弦定理、余弦定理的應(yīng)用(1) 【三維目標】: 一、知識與技能 ,并能應(yīng)用正弦定理、余弦...
2024-10-06 05:35