【摘要】題型二:平面向量的共線問題1、若A(2,3),B(x,4),C(3,y),且=2,則x=,y=2、已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點(diǎn)是()A.A、B、DB.A、B、CC.B、C、DD.A、C、D3、如果e1、e2是平面α內(nèi)兩個(gè)不共線的向量
2025-04-03 01:23
【摘要】共線向量與共面向量一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作ba//:對空間任意兩個(gè)向量的充要條件是存在實(shí)數(shù)使baobba//),(,?ba??
2025-08-03 00:27
【摘要】1212112212,,,,,,,,,,.nnnnnaaakkkakakakaaaa????定義設(shè)是一組向量,是一組實(shí)數(shù),則所組成的向量叫做向量組的一個(gè)線性組合四共線、共面的向量組下一頁返回
2025-07-31 21:21
【摘要】共線向量與共面向量ABCDDCBA)()1(''CCBCABxAC???ADyABxAAAE???')2(練習(xí)在立方體AC1中,點(diǎn)E是面A’C’的中心,求下列各式中的x,y.EABCDDCBA)()1(''
2025-08-02 06:25
【摘要】淮北礦業(yè)集團(tuán)公司中學(xué)紀(jì)迎春一.復(fù)習(xí)提問:...二.新課:定理:對于空間任意兩個(gè)向量a、b(b=0),a//b的充要條件是存在實(shí)數(shù)λ使a=λb.推論:如果l為經(jīng)過已知點(diǎn)A且平行于已知非零向量a的直線,那么對任一點(diǎn)O,點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,滿足等式
2025-08-03 00:32
【摘要】主講老師:共線向量復(fù)習(xí)引入(1)數(shù)量與向量有何區(qū)別?(2)如何表示向量?(3)有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?(4)長度為零的向量叫什么向量?長度為1的向量叫什么向量?講授新課(5)滿足什么條件的兩個(gè)向量是相同向量?單位向量是相同向量嗎?
2024-11-21 01:24
2025-08-03 15:38
【摘要】平面向量的坐標(biāo)運(yùn)算a-b),(2211baba???),(2211baba???a+b12(,)aaa????1212xxabyy???????一一對應(yīng)一一對應(yīng)點(diǎn)AOA向量(,)xy坐標(biāo)1122+eeaaa?12(,)aaa?1
2025-07-29 05:00
2024-08-20 18:38
【摘要】最值問題(1)1、(11豐臺一摸)已知:在△ABC中,BC=a,AC=b,以AB為邊作等邊三角形ABD.探究下列問題:(1)如圖1,當(dāng)點(diǎn)D與點(diǎn)C位于直線AB的兩側(cè)時(shí),a=b=3,且∠ACB=60°,則CD=;(2)如圖2,當(dāng)點(diǎn)D與點(diǎn)C位于直線AB的同側(cè)時(shí),a=b=6,且∠ACB=90°,則CD=;(3)
2025-04-03 03:43
【摘要】[鍵入文字]有機(jī)物分子共線、共面問題分子內(nèi)原子共線、共面的判定,僅為一維、二維想象,但存在線面、面面的交叉,所以有一定的難度。一、幾個(gè)特殊分子的空間構(gòu)型:①CH4分子為正四面體結(jié)構(gòu),其分子最多有3個(gè)原子共處同一平面。甲烷型:正四面體結(jié)構(gòu),4個(gè)C—H健不在同一平面上??凡是碳原子與4個(gè)原子形成4個(gè)共價(jià)鍵時(shí),空間結(jié)構(gòu)都是正四面體
2025-04-03 04:00
【摘要】多重共線性問題的幾種解決方法在多元線性回歸模型經(jīng)典假設(shè)中,其重要假定之一是回歸模型的解釋變量之間不存在線性關(guān)系,也就是說,解釋變量X1,X2,……,Xk中的任何一個(gè)都不能是其他解釋變量的線性組合。如果違背這一假定,即線性回歸模型中某一個(gè)解釋變量與其他解釋變量間存在線性關(guān)系,就稱線性回歸模型中存在多重共線性。多重共線性違背了解釋變量間不相關(guān)的古典假設(shè),將給普通最小二乘法帶來嚴(yán)重后果。這里,
2025-06-16 18:28
【摘要】上點(diǎn)在證明且若三點(diǎn)不共線若ABPnmRnmOBnOAmOPBAO:,1,,,,,?????“不是定理勝定理”的結(jié)論ODCBAODtOC?設(shè))(OByOAxt??)01(???t1,,???yxDBA三點(diǎn)共線?tyxtnm?????)(.,,,,,:的取值范圍求若外的點(diǎn)的
2024-08-20 05:53
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《向量的幾何表示和相等向量與共線向量》教學(xué)目標(biāo)?掌握向量的表示方法、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量.?通過對向量的學(xué)習(xí),使學(xué)生初步認(rèn)識現(xiàn)實(shí)生活中的向量和數(shù)量的本質(zhì)區(qū)別.?通過學(xué)生對向量與數(shù)量的識別能力的訓(xùn)練,培養(yǎng)學(xué)生認(rèn)識客觀
2024-11-24 19:04
【摘要】立體幾何中的共點(diǎn)、共線、共面問題一、共線問題例1.若ΔABC所在的平面和ΔA1B1C1所在平面相交,并且直線AA1、BB1、CC1相交于一點(diǎn)O,求證:(1)AB和A1B1、BC和B1C1、AC和A1C1分別在同一平面內(nèi);(2)如果AB和A1B1、BC和B1C1、AC和A1C1分別相交,那么交點(diǎn)在同一直線上(如圖).例2.點(diǎn)P、Q、R分別在三棱錐A-BCD的三
2025-04-03 06:43