【摘要】對數(shù)函數(shù)圖象與性質(zhì)a10a1圖象性質(zhì)定義域:值域:在(0,+∞)上是函數(shù)在(0,+∞)上是函數(shù)32.521.510.5-0.5-1-1.5-2
2024-11-23 21:10
【摘要】作函數(shù)的圖象的常用方法1.描點作圖法。2.變換作圖法.畫出下列函數(shù)的圖象,并(1)y=x2(2)y=x2+1(3)y=x2-1說明它們的關(guān)系:基礎(chǔ)練習(xí)。少兒英語;邪巾文遙收論爾朱榮比韋治在鎬京
2024-08-31 02:22
【摘要】正切函數(shù)的圖象和性質(zhì)(一)請同學(xué)們回憶一下,我們是怎樣利用單位圓中的正弦線作出y=sinx的圖象的?一、本節(jié)課,我們主要學(xué)習(xí)利用單位圓中的正切線來繪制y=tanx的圖象。注意:因為T=2?,先作長度為一個周期的閉區(qū)間上的簡圖,然后將簡圖左右擴展
2024-11-21 12:40
【摘要】第五節(jié)函數(shù)的圖象作圖作出下列函數(shù)的圖象.(1)y=x2-4|x|+3;(2)y=112??xx分析(1)函數(shù)為偶函數(shù),作出y軸右側(cè)的圖象,利用對稱性作出y軸左側(cè)部分圖象;(2)化簡函數(shù)解析式,變換作圖.解(1)y=x2-4|x|+3=其圖象為圖(1)
【摘要】函數(shù)圖象的變換引例:函數(shù)和的圖象分別是由的圖象經(jīng)過如何變化得到的?oyx1y=x2y=(x+1)2-2(2)將y=x2的圖象沿x軸向左平移一個單位,再沿y軸方向向下平
2024-11-21 09:23
【摘要】正切函數(shù)的圖象和性質(zhì)(一)請同學(xué)們回憶一下,我們是怎樣畫出y=sinx的圖象的?如何來畫出y=tanx的圖象.利用單位圓中的正切線利用正弦線先畫出一個周期內(nèi)的圖像,然后將其左右平移周期的整數(shù)倍,擴展成整個正弦函數(shù)的圖像畫y=tanx的圖象時,利用正切線先畫出一個周
2024-08-03 20:47
【摘要】我們的目標(biāo)1、掌握利用正切線畫正切函數(shù)圖象的方法2、能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用§正切函數(shù)的圖象和性質(zhì)(一)1、利用正切函數(shù)的定義,說出正切函數(shù)的定義域;2、利用周期函數(shù)的定義及誘導(dǎo)公式,推導(dǎo)正切函數(shù)的最小正周期;一方面:另一方面:故T不存在,最小正周期為π
2024-11-22 22:25
【摘要】正切函數(shù)的圖象與性質(zhì)梅元英自主學(xué)習(xí)仔細研讀課本42-44頁,合上書本回答以下問題:)(.,)tan(.3.,,)tan(.2.tan,cossint填奇函數(shù)或偶函數(shù)故正切函數(shù)是周期是故正切函數(shù)是周期函數(shù)的定義域為那么??????xxxyxxx?
【摘要】(一)用什么方法作出正弦函數(shù)的圖象呢?描點法但描點法的各點的縱坐標(biāo)都是查三角函數(shù)表得到的數(shù)值,不易描出對應(yīng)點的精確位置,因此作出的圖象不夠準(zhǔn)確.幾何法用單位圓中的正弦線作正弦函數(shù)的圖象.正弦函數(shù)的圖象為了作三角函數(shù)的圖象,三角函數(shù)的自變量要用弧度制來度量,使自變量與函數(shù)值都為
2024-11-24 01:35
【摘要】三角函數(shù)的圖象與性質(zhì)、余弦函數(shù)的圖象x,對應(yīng)的正弦值(sinx)、余弦值(cosx)是否存在?惟一?問題提出t57301p2???????,角α的正弦線、余弦線分別是什么?P(x,y)OxyMsinα=MPcosα=OM,要直觀、全面了解正、余弦函數(shù)的基本特性,我們應(yīng)從哪個方面
【摘要】函數(shù)圖象的變換函數(shù)圖象的變換引例:函數(shù)和的圖象分別是由的圖象經(jīng)過如何變化得到的?oyx1y=x2y=(x+1)2-2(2)將y=x2的圖象沿x軸向左
2024-11-22 12:27
【摘要】定義設(shè)函數(shù)y=f(x)(x∈A)的值域為C,從y=f(x)中解出x,得到x=φ(y)。如果對于y在C中的任何一個值,通過x=φ(y),x在A中都有唯一的值和它對應(yīng),那么,x=φ(y)(y∈C)就表示y是自變量,x是y的函數(shù)。叫做y=f(x)(x∈A)的反函數(shù)。記作x=f-1(
2024-11-21 04:47
【摘要】《指數(shù)函數(shù)》說課稿四中一、教材分析?1、教材的地位和作用教材的地位和作用函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的思想貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運算的基礎(chǔ)上,進一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖象與性質(zhì)。它一方面可以進一步深化學(xué)生對函數(shù)概念的理解與認識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,同時也為今后研
2024-09-04 17:34
【摘要】xyoP(x,y)1-11-1M?的終邊A(1,0)TsincostanMPOMAT??????R[-1,1]R[-1,1]R值域定義域三角函數(shù)sin?cos?tan?{|,}2kkZ?????
2024-11-22 08:32
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《三角函數(shù)的圖像和性質(zhì)》學(xué)習(xí)目標(biāo):(1)利用單位圓中的三角函數(shù)線作出sin,Ryxx??的圖象,明確圖象的形狀;cos,Ryxx??(2)根據(jù)關(guān)系,作出的圖象;(3)用“五點法”作出正弦函數(shù)、余弦函數(shù)的簡圖,并利用
2024-11-23 21:28