【摘要】2020/12/19向量的加法看書(shū)P80~83(限時(shí)6分鐘)學(xué)習(xí)目標(biāo):通過(guò)實(shí)例,掌握向量的加法運(yùn)算及理解其幾何意義。熟練運(yùn)用加法的“三角形法則”和“平行四邊形”法則2020/12/19由于大陸和臺(tái)灣沒(méi)有直航,因此要從臺(tái)灣去上海探親,乘飛機(jī)要先從臺(tái)北到香港,再?gòu)南愀鄣缴虾?,這兩次位移
2024-11-24 17:12
【摘要】2022/8/25向量的加法看書(shū)P80~83(限時(shí)6分鐘)學(xué)習(xí)目標(biāo):通過(guò)實(shí)例,掌握向量的加法運(yùn)算及理解其幾何意義。熟練運(yùn)用加法的“三角形法則”和“平行四邊形”法則2022/8/25由于大陸和臺(tái)灣沒(méi)有直航,因此要從臺(tái)灣去上海探親,乘飛機(jī)要先從臺(tái)北到香港,再?gòu)南愀鄣缴虾#@兩次位移之和
2024-08-30 23:22
【摘要】及其幾何意義1、向量:既有又有的量叫向量大小方向3、相等向量:長(zhǎng)度且方向的向量叫相等向量2、共線(xiàn)向量(平行向量):(1)方向或_____的非零向量叫平行向量(2)規(guī)定:
2024-08-20 05:48
【摘要】第一篇:《平面向量的加法教案》 《平面向量的加法》教案 課題名稱(chēng):平面向量的加法 教材版本:蘇教版《中職數(shù)學(xué)基礎(chǔ)模塊*下冊(cè)》年級(jí):高一 撰寫(xiě)教師:徐艷 一、理解課程要求 教材分析: (1...
2024-11-16 01:56
【摘要】課題:平面向量的加法生活中有向量生活中用向量濟(jì)南香港臺(tái)灣飛機(jī)從A到B,再改變方向從B到C,則兩次位移的和BCABBACC??A濟(jì)南香港臺(tái)灣沈陽(yáng)向量加法的定義:已知向量,,在平面上任取一點(diǎn),作=,作
2024-08-10 00:59
【摘要】4.平面向量的基本定理、平面向量的坐標(biāo)表示及平面向量的坐標(biāo)運(yùn)算.5.平面向量的數(shù)量積及向量的應(yīng)用.1.向量的概念,向量的幾何表示,共線(xiàn)向量的概念.2.向量的加法、減法法則.3.實(shí)數(shù)與向量的積、兩個(gè)向量共線(xiàn)的充要條件.3.掌握平面向量的數(shù)量積及其幾何意義,能用平面向量的數(shù)量積處理有關(guān)長(zhǎng)度、角度和垂直的
2025-06-03 17:09
【摘要】向量的減法baOaaaaaaaabbbbbbbBbaAa+b一、復(fù)習(xí):1.向量加法法則:三角形法則baAaaaaaaaabbbBbaDaCba+b平行四邊形法則
2024-08-30 21:42
【摘要】平面向量一、本章知識(shí)體系?重點(diǎn)及難點(diǎn):向量概念;向量共線(xiàn)的充要條件;平面向量基本定理;向量的數(shù)量積定義,及運(yùn)算程及運(yùn)用;定比分是公式;平移公式及應(yīng)用;用正、余弦定理解三角形。???純?nèi)容:平面向量的概念及運(yùn)算;向量數(shù)量積的,應(yīng)用向量知識(shí)解決向量平行、垂直、角度和長(zhǎng)度等問(wèn)題,解斜三角形。?例如圖:△AB
2024-11-21 00:20
【摘要】題型二:平面向量的共線(xiàn)問(wèn)題1、若A(2,3),B(x,4),C(3,y),且=2,則x=,y=2、已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線(xiàn)的三點(diǎn)是()A.A、B、DB.A、B、CC.B、C、DD.A、C、D3、如果e1、e2是平面α內(nèi)兩個(gè)不共線(xiàn)的向量
2025-04-03 01:23
【摘要】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個(gè)向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時(shí),夾角θ=
2024-11-24 16:44
【摘要】湖南長(zhǎng)郡衛(wèi)星遠(yuǎn)程學(xué)校平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算主講:王毅湖南長(zhǎng)郡衛(wèi)星遠(yuǎn)程學(xué)校提問(wèn):湖南長(zhǎng)郡衛(wèi)星遠(yuǎn)程學(xué)校(1)平面向量的基本定理的內(nèi)容是什么?什么叫做平面向量的基底?提問(wèn):湖南長(zhǎng)郡衛(wèi)星遠(yuǎn)程學(xué)校(1)平面向量的基本定理的內(nèi)容是什
2024-11-21 02:25
【摘要】人教版高一數(shù)學(xué)第二學(xué)期第五章第主講:特級(jí)教師王新敞《高中數(shù)學(xué)同步輔導(dǎo)課程》平面向量的基本定理2020/12/17特級(jí)教師王新敞----源頭學(xué)子2奎屯王新敞新疆教學(xué)目的:教學(xué)重點(diǎn):教學(xué)難點(diǎn):1.了解平面向量基本定理的證明.2.掌握平面向量基本定理及其應(yīng)用:①平面內(nèi)的任
2024-11-22 03:15
【摘要】平面向量的坐標(biāo)運(yùn)算平面向量共線(xiàn)的坐標(biāo)表示問(wèn)題提出?若e1、e2是同一平面內(nèi)的兩個(gè)不共線(xiàn)向量,則對(duì)于這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個(gè)單位向量,若a=xi+yj,則a=(x,y).,使得向量具有代數(shù)特征,并
2025-07-28 00:10
【摘要】設(shè)向量(1)若與垂直,求的值;(2)求的最大值;(3)若,求證:∥.答案:由與垂直,,即,;,最大值為32,所以的最大值為。由得,即,所以∥.來(lái)源:09年高考江蘇卷題型:解答題,難度:容易已知向量的夾角為60°,則的值為 C. D.
2025-01-24 03:33
【摘要】北東BCA北東定義:求兩個(gè)向量的和向量的運(yùn)算,叫做向量的加法一艘漁船從碼頭A處出發(fā),向正東方向航行20海里到達(dá)B處,再改變航向,又向正北方向航行了20海里到達(dá)C處時(shí),機(jī)器發(fā)生故障不能繼續(xù)航行了。船長(zhǎng)馬上向碼頭A處的值班人員求救
2024-12-12 15:15