【正文】
e of unit area as an approximation to the unit impulse. As the rectangular pulse gets taller and narrower, .)0()()()(l i m 0 ? ???? ??? ftfdttptf ????? ??? ? )0()()( fdtttf ?可得 )()0()()( tfttf ?? ?)( tf)1(t0t))((0tft0t)()(0tttf ??)()0()()( tfttf ?? ?0 )()( ttf ?)()()()( 000 tttftttf ??? ??Unit impulse 單位沖激信號(hào) Unit impulse —— properties ??????????????????)0()()0()0()()()(fdttfdtftdttft???t )0(f0 )()()()()(0000tfdttttfdttftt?????????????????)( 0tf0 t Unit impulse 單位沖激信號(hào) Unit impulse —— properties Sampling of CT signals ???????kkTttfkTf )()()( ?)(tf)(kTft k . ? ?? ?????????????????????????????302302552)2()4)2()3)]()([s i n)2)()12()1ktktdtktedtktetttdtttt??????1 0 41 ?? e4?eUnit impulse 單位沖激信號(hào) Unit impulse —— properties 2. 尺度變換特性 )(1)( taat ?? ?dtattg )()( ?????adxxaxgxat )()/( ??? ????ag )0(?dtattg )()( ????? ag )0(?Unit impulse 單位沖激信號(hào) Unit impulse —— properties 3. 偶函數(shù)性 )()( tt ?? ??If a= ?1, then ?(t)=?(?t) ) / ( 1 ) ( a b t a b at ? ? ? ? ? )(1)( taat ?? ?Unit impulse 單位沖激信號(hào) Unit impulse —— properties 4. 對(duì)時(shí)間的微分等于 單位沖激偶函數(shù) 0??0??)(t?)(39。 t?Differentiation Unit impulse 單位沖激信號(hào) Unit impulse —— properties 4. 對(duì)時(shí)間的微分等于 單位沖激偶函數(shù) (Cont’d) ? ??? ??? )()()( 0/0/ tfdttttf ????? ?? 0)( 0/ dttt?)()( // tt ??? ??? ??? ?? )0(39。 fdttft?? ?? ? 0)(39。3 tetf t???)()()()()]()([: 39。39。39。39。 tftfttf ??? ???)()0()()0()()( 39。39。0339。3ttteteteS o l u t i o n t?????????? ???:Integration of Signals dxxftgt)()( ??????????? dt)(39。)()( tfdt tdftg ??)()( tetfE x a m p l e t ???:)()()(39。39。)()( tttet ??? ???)( tf1 2 3123)( tf1 2 3121?)1()2( ?Twominute miniquiz problem Problem Interpret and sketch the generalized function where Differentiation and Integration )(39。54????2)(2s i n239。)(39。d The constitutive relations for each element yield Combining KCL and the constitutive relations yields ? ????? ? t LLLLL duLitidt tdiLtu 0 )(1)0()()()( ??? ????? ? t ccccc diCutudt tduCti 0 )(1)0()()()( ??列寫電路的一般方法 ?支路電流(電壓)法 ?網(wǎng)孔分析法 ?節(jié)點(diǎn)電壓法 系統(tǒng)方程的算子表示方法 Operator: dttdftpfdtdpo p e r a t o ralD i f f e r e n t i )()(: ?? ? ??? t dftfppo p e r a t o rI n t e g r a l ?? )()(11: )(: )(1 i n t )(: pHo p e r a t o rt r a n f e rpDo p t e r a t o re g r a ldg e n e r a l i z epNo p e r a t o rald i f f e r e n t idg e n e r a l i z e 算子運(yùn)算規(guī)則 ? 符合代數(shù)運(yùn)算規(guī)則 例 ? ? )()23()()2)(1( 2 tfpptfpp ?????)()()()()()()()(tftytpftpyctftytfdt