【摘要】《雙曲線》練習(xí)題一、選擇題:1.已知焦點(diǎn)在x軸上的雙曲線的漸近線方程是y=±4x,則該雙曲線的離心率是( A )A. B.C.D.2.中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的實(shí)軸與虛軸相等,一個(gè)焦點(diǎn)到一條漸近線的距離為,則雙曲線方程為( B?。〢.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2= D.x2﹣y2=3.在平面直角
2025-07-02 15:36
【摘要】雙曲線1.到兩定點(diǎn)、的距離之差的絕對值等于6的點(diǎn)的軌跡()A.橢圓 B.線段 C.雙曲線 D.兩條射線2.方程表示雙曲線,則的取值范圍是 ()A. B. C. D.或3.雙曲線的焦距是 ()A.4 B. C.8 D.與有關(guān)4.已知m,n為兩個(gè)不相等的非零實(shí)數(shù),則方程mx-y+n=0與nx2
2025-07-02 15:17
【摘要】一、課前練習(xí):,并說出焦點(diǎn)坐標(biāo)、焦距。(1)(2)(3):兩個(gè)焦點(diǎn)的坐標(biāo)分別為,橢圓上一點(diǎn)P到兩焦點(diǎn)距離的和等于10。,實(shí)數(shù)的取值范圍是____________二、典例:例1已知橢圓兩個(gè)焦點(diǎn)的坐標(biāo)分別是,,并且經(jīng)過點(diǎn),求它的標(biāo)準(zhǔn)方程.變式練習(xí)1:與橢圓x2+4y2=16有相同焦點(diǎn),且過點(diǎn)(的橢圓方程是
2025-06-29 07:10
【摘要】1《雙曲線及其標(biāo)準(zhǔn)方程》教學(xué)設(shè)計(jì)貴陽39中李明新課程教學(xué),更強(qiáng)調(diào)學(xué)生的主體性,突出學(xué)生的主體性,采用“合作、自主、探究”的學(xué)習(xí),又要還給學(xué)生更大的自主學(xué)習(xí)空間。所以如何充分利用課堂時(shí)間,調(diào)動(dòng)學(xué)生的積極性,提高課堂效益是數(shù)學(xué)教師面臨的一個(gè)重要問題。我想從我自己的實(shí)踐來談?wù)勅绾卧O(shè)計(jì)一節(jié)課,使我的教學(xué)更適應(yīng)時(shí)代的發(fā)展,
2024-12-05 00:12
【摘要】精品資源雙曲線及其標(biāo)準(zhǔn)方程 一、教學(xué)目標(biāo)(一)知識教學(xué)點(diǎn)使學(xué)生掌握雙曲線的定義和標(biāo)準(zhǔn)方程,以及標(biāo)準(zhǔn)方程的推導(dǎo).(二)能力訓(xùn)練點(diǎn)在與橢圓的類比中獲得雙曲線的知識,從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點(diǎn)本次課注意發(fā)揮類比和設(shè)想的作用,與橢圓進(jìn)行類比、設(shè)想,使學(xué)生得到關(guān)于雙曲線的定義、標(biāo)準(zhǔn)方程一個(gè)比較深刻的認(rèn)識.二、教材分析1.重點(diǎn):雙曲線的
2025-07-23 15:53
【摘要】雙曲線及其標(biāo)準(zhǔn)方程(教學(xué)設(shè)計(jì))一、教學(xué)目標(biāo):知識與技能:()理解雙曲線的定義及焦點(diǎn)、焦距的意義,掌握雙曲線的標(biāo)準(zhǔn)方程.()根據(jù)不同的題設(shè)條件,正確區(qū)分兩種不同的標(biāo)準(zhǔn)方程.過程與方法:()引導(dǎo)學(xué)生,通過與橢圓的對比去探索雙曲線標(biāo)準(zhǔn)方程的推導(dǎo),加深對數(shù)形結(jié)合思想及事物類比的研究方法的認(rèn)識.()從建立坐標(biāo)系、簡化方程過程中,培養(yǎng)學(xué)生觀察、分析、推理的能力.情感態(tài)
2025-07-23 18:41
【摘要】雙曲線方程及離心率練習(xí)題1.已知雙曲線過點(diǎn),則雙曲線的離心率為()A.B.C.D.2.雙曲線的離心率為,則的值為()A.1B.-1C.D.22.已知雙曲線:(,)的一條漸近線為,圓:與交于,兩點(diǎn),若是等腰直角三角形,且(其中為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()
2025-04-02 23:28
【摘要】雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)一、雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).1.雙曲線的定義:平面內(nèi)與兩定點(diǎn)F1、F2的距離差的絕對值是常數(shù)(大于零,小于|F1F2|)的點(diǎn)的軌跡叫雙曲線。兩定點(diǎn)F1、F2是焦點(diǎn),兩焦點(diǎn)間的距離|F1F2|是焦距,用2c表示,常數(shù)用2表示。(1)若|MF1|-|MF2|=2時(shí),曲線只表示焦點(diǎn)F2所對應(yīng)的一支雙曲線.(2)若|MF1|-|MF2|=-2時(shí),曲線只表
2025-07-23 18:45
【摘要】高二年級數(shù)學(xué)科輔導(dǎo)講義(第講)學(xué)生姓名:授課教師:授課時(shí)間:專題雙曲線及其標(biāo)準(zhǔn)方程目標(biāo)掌握雙曲線的定義、焦點(diǎn)、離心率;漸進(jìn)線等概念重難點(diǎn)雙曲線的定義和標(biāo)準(zhǔn)方程??键c(diǎn)求雙曲線的標(biāo)準(zhǔn)方程;求弦中點(diǎn)的軌跡方程第一部分、基礎(chǔ)知識梳理(1
2025-07-24 03:56
【摘要】一、雙曲線的定義1、第一定義:到兩個(gè)定點(diǎn)F1與F2的距離之差的絕對值等于定長(<|F1F2|)的點(diǎn)的軌跡((為常數(shù)))。這兩個(gè)定點(diǎn)叫雙曲線的焦點(diǎn)。要注意兩點(diǎn):(1)距離之差的絕對值。(2)2a<|F1F2|。當(dāng)|MF1|-|MF2|=2a時(shí),曲線僅表示焦點(diǎn)F2所對應(yīng)的一支;當(dāng)|MF1|-|MF2|=-2a時(shí),曲線僅表示焦點(diǎn)F1所對應(yīng)的一支;
2025-07-02 15:22
【摘要】教學(xué)設(shè)計(jì)方案課題名稱雙曲線及其標(biāo)準(zhǔn)方程姓名王菲菲工作單位河北黃驊中學(xué)年級學(xué)科高二數(shù)學(xué)教材版本人教A版一、教學(xué)內(nèi)容分析在高中數(shù)學(xué)中,雙曲線及其標(biāo)準(zhǔn)方程的課程,在分析初等函數(shù)之前,是了解笛卡爾坐標(biāo)圖線的重點(diǎn)。他是為培養(yǎng)學(xué)生對于坐標(biāo)圖線了解函數(shù)關(guān)系打下基礎(chǔ),其關(guān)鍵在于了解學(xué)生對于圖像認(rèn)識的能力,培養(yǎng)學(xué)生用數(shù)軸圖形了解函數(shù)信息的能力?,F(xiàn)如今在數(shù)學(xué)
2024-08-20 04:13
【摘要】我努力,我堅(jiān)持,我一定能成功222bac??定義圖象方程焦點(diǎn)的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)22221xyab??22221
2025-06-21 18:19
【摘要】雙曲線的標(biāo)準(zhǔn)方程(第一課時(shí)) (一)教學(xué)目標(biāo) 掌握雙曲線的定義,會(huì)推導(dǎo)雙曲線的標(biāo)準(zhǔn)方程,能根據(jù)條件求簡單的雙曲線標(biāo)準(zhǔn)方程. ?。ǘ┙虒W(xué)教程 【復(fù)習(xí)提問】 由一位學(xué)生口答,教師板書. 問題:橢圓的第一定義是什么? 問題:橢圓的標(biāo)準(zhǔn)方程是怎樣的? 【新知探索】 ?。p曲線的概念 如果把上述定義中的“距離的和”改為“距離的差”,那么點(diǎn)的軌跡
2025-07-23 19:04
【摘要】2020年12月19日星期六xyoF1F2M(-c,0)(c,0)(x,y)xyoF1(0,c)F2(0,-c)M(x,y)22221(0)yxabab????22221(0)xyabab????M||MF1|-|MF2||=定
2024-11-24 01:38
【摘要】雙曲線基礎(chǔ)練習(xí)題一、選擇題1.已知a=3,c=5,并且焦點(diǎn)在x軸上,則雙曲線的標(biāo)準(zhǔn)程是()A.B.C.2.已知并且焦點(diǎn)在y軸上,則雙曲線的標(biāo)準(zhǔn)方程是()A.B.C.D.3..雙曲線上P點(diǎn)到左焦點(diǎn)的距離是6,則P到右焦點(diǎn)的距離是()A.12B.14C.16D.
2025-04-04 05:43