【摘要】我努力,我堅(jiān)持,我一定能成功222bac??定義圖象方程焦點(diǎn)的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)22221xyab??22221
2025-06-21 18:19
【摘要】標(biāo)準(zhǔn)方程:ace?1、范圍:x≥a或x≤-a;2、對稱性:關(guān)于x軸,y軸,原點(diǎn)對稱;3、頂點(diǎn):A1(-a,0),A2(a,0),實(shí)軸,且;虛軸,且.4、離心率:(e1)a,b,c的幾何意義各是:
2024-11-21 08:10
【摘要】橢圓與雙曲線定義的應(yīng)用2.雙曲線的定義:平面內(nèi)與兩個(gè)定點(diǎn)12,FF的距離的差的絕對值等于常數(shù)(小于12FF)的點(diǎn)的軌跡叫做雙曲線.1.橢圓的定義:平面內(nèi)到兩個(gè)定點(diǎn)12,FF的距離的和等于常數(shù)(大于12FF)的點(diǎn)的軌跡叫橢圓.思考一:(課本54PB組第2題)
2024-11-21 00:53
【摘要】F2F1M定義曲線方程焦點(diǎn)關(guān)系y·oxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2F(±c,0)
2024-11-18 14:33
【摘要】直線與橢圓:(2)弦長問題||1||2akAB????(3)弦中點(diǎn)問題(4)經(jīng)過焦點(diǎn)的弦的問題(1)直線與橢圓位置關(guān)系韋達(dá)定理或設(shè)點(diǎn)作差法0___??||)1(1||//2akAB????OABSkkkxyyx??????,求)若(的范圍;點(diǎn),求)若直
2024-10-10 18:53
【摘要】雙曲線的定義及標(biāo)準(zhǔn)方程yxF1F2OA2B2A1B1yxA1F1F2OA2)1,0(??ace橢圓雙曲線方程圖形范圍
2024-11-18 19:22
【摘要】練習(xí):求下列直線與雙曲線的交點(diǎn)坐標(biāo).直線與雙曲線位置關(guān)系及交點(diǎn)個(gè)數(shù)XYOXYO相交:兩個(gè)交點(diǎn)相切:一個(gè)交點(diǎn)相離:0個(gè)交點(diǎn)相交:一個(gè)交點(diǎn)例1:如果直線y=kx-1與雙曲線x2-y2=4僅有一個(gè)公共點(diǎn),求k的取值范圍.分析:只有一個(gè)公共點(diǎn),即方程組僅有一組實(shí)數(shù)解.
2024-11-22 21:43
【摘要】評講作業(yè)及《勸學(xué)》的雙曲線方程。弦長為所截得的,且直線:求漸進(jìn)線方程為33803021?????yxyx)0(422?????yx解:設(shè)所求雙曲線為????????2243yxxy聯(lián)立0362432??????xx3383)36(12241122???????d4???14:2
2024-11-18 23:49
【摘要】雙曲線的簡單幾何性質(zhì)(3)雙曲線的焦半徑一般地,若P(x0,y0)是橢圓(ab0)上任意一點(diǎn),則點(diǎn)P到左焦點(diǎn)F1的距離為:點(diǎn)P到右焦點(diǎn)F2的距離為:12222??byaxxyOF1
2024-08-20 04:06
【摘要】雙曲線及標(biāo)準(zhǔn)方程一、回顧?、焦點(diǎn)坐標(biāo)是什么?定義圖象方程焦點(diǎn)關(guān)系yoxF1F2··xyoF1F2··x2a2+y2b2=1y2x2a
2024-08-16 17:58
【摘要】雙曲線的簡單幾何性質(zhì)練習(xí)Axy43?Cxy43??yx43??DByx43?1、雙曲線9x-16y=144的漸近線方程為:22練習(xí)2、實(shí)軸長為10、虛軸長為8、焦點(diǎn)在x軸的雙曲線的標(biāo)準(zhǔn)方程為練習(xí)3、焦距為10、虛軸長為8、焦點(diǎn)在y軸
2024-10-28 13:09
【摘要】復(fù)習(xí):、焦點(diǎn)、焦距、兩種情形的標(biāo)準(zhǔn)方程。雙曲線定義:平面內(nèi)與兩個(gè)定點(diǎn)、的距離的差的絕對值等于常數(shù)(小于)的點(diǎn)的軌跡叫做雙曲線。這兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),兩焦點(diǎn)的距離叫雙曲線的焦距。1F2F21||FF若焦點(diǎn)在x軸上,雙曲線的標(biāo)準(zhǔn)方程為:22
2024-12-01 18:48
【摘要】雙曲線的簡單幾何性質(zhì)(3)雙曲線的焦半徑懷化鐵路第一中學(xué)陳娟一般地,若P(x0,y0)是橢圓(ab0)上任意一點(diǎn),則點(diǎn)P到左焦點(diǎn)F1的距離為:點(diǎn)P到右焦點(diǎn)F2的距離為:12222??
2024-08-19 14:32
【摘要】.F2F1yox.xF1F20y..橢圓、雙曲線的方程(各取一種情況)、性質(zhì)的對比.橢圓雙曲線幾何條件標(biāo)準(zhǔn)方程頂點(diǎn)坐標(biāo)對稱軸焦點(diǎn)坐標(biāo)離心率準(zhǔn)線方程漸近線方程與兩個(gè)定點(diǎn)的距離的和等于常數(shù).與兩個(gè)定點(diǎn)的距離的差的絕對值等于常數(shù).焦點(diǎn)
2024-11-22 22:30
【摘要】第六節(jié)雙曲線基礎(chǔ)梳理1.雙曲線的定義(1)平面內(nèi)動(dòng)點(diǎn)的軌跡是雙曲線必須滿足兩個(gè)條件:①到兩個(gè)定點(diǎn)F1、F2的距離的________等于常數(shù)2a;②2a______|F1F2|.(2)上述雙曲線的焦點(diǎn)是________,焦距是________.2.雙曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì)-標(biāo)準(zhǔn)方程
2024-11-23 05:50