【摘要】第四節(jié)一元一次不等式(組)及其應用考點一不等式的概念與性質(zhì)例1若a<b,則下列結(jié)論不一定成立的是()A.a(chǎn)-1<b-1B.2a<2bC.->-D.a(chǎn)2<b2【分析】由不等式的性質(zhì)進行計算并作出正確的判斷.a(chǎn)3b3【自主解答】選項A,在不等式a<b的兩邊
2025-06-26 12:17
【摘要】第二章方程(組)與不等式(組)第四節(jié)一次不等式(組)考點一解一元一次不等式例1(2022·江西)解不等式:x-1≥+3.【分析】按照解不等式的步驟,逐一求解,注意去分母時,要給各項都乘以分母的最小公倍數(shù),去括號時注意是否變號,移項時一定要變號.【自主解答】解:去分母
2025-06-21 02:34
【摘要】考點一不等式的性質(zhì)(5年1考)例1(2022·濱州中考)已知a,b都是實數(shù),且a<b,則下列不等式的變形正確的是()A.a(chǎn)+x>b+xB.-a+1<-b+1C.3a<3bD.C【分析】根據(jù)不等式的性質(zhì)進行判斷.【自主解答】A.不等式的兩邊都
2025-06-21 13:10
【摘要】第四節(jié)一元一次不等式(組)考點一一元一次不等式的解法及解集表示例1(2022·安徽)不等式4-2x0的解集在數(shù)軸上表示為()【分析】按照解不等式的步驟求解不等式的解集,再將其表示在數(shù)軸上即可.【自主解答】解4-2x0,得x2,在數(shù)軸上表示如解圖.解一元一次不等
2025-06-25 12:07
【摘要】第四節(jié)一元一次不等式(組)考點一一元一次不等式(組)的解法及特殊解命題角度?解一元一次不等式(組)例1(2022·云南省卷)不等式2x-6>0的解集是()A.x>1B.x<-3C.x>3D.x<3【分析】根據(jù)解不等式法則,直接求解.【自主解答】解2x-
2025-06-27 01:40
【摘要】第二章方程(組)與不等式(組)考點一解二元一次方程組例1(2022·福建A卷)解方程組:【分析】觀察方程組,可用代入消元法求解,也可直接用加減消元法求解.【自主解答】解法一:加減消元法:②-①,得3x=9,解得x=x=3代入①,得3+y=1,解得y=-2.所
2025-06-28 17:07
2025-06-21 01:32
2025-06-21 13:23
【摘要】第二章方程(組)與不等式(組)考點一解二元一次方程組例1(2022·福建A卷)解方程組:【分析】觀察方程組,可用代入消元法求解,也可直接用加減消元法求解.【自主解答】解法一:加減消元法:②-①,得3x=9,解得x=x=3代入①,得3+y=1,解得y=-2.所以
2025-06-27 12:22
【摘要】第四節(jié)一元一次不等式(組)考點一不等式的性質(zhì)(5年0考)例1下列說法不一定成立的是()A.若a>b,則a+c>b+cB.若a+c>b+c,則a>bC.若a>b,則ac2>bc2D.若ac2>bc2,則a>b【分析】根據(jù)不等式的性質(zhì)進行判斷.
2025-06-21 13:25
2025-06-21 22:24
【摘要】第二章方程(組)與不等式(組)一元一次不等式(組)及其應用考點1不等式及其性質(zhì):用①不等號表示不等關系的式子,叫作不等式。(1)若ab,c0,則acbc(或);(3)若a&
2025-06-20 23:53
2025-06-24 22:33
【摘要】UNITTWO第二單元方程(組)與不等式(組)第9課時一元一次不等式(組)及其應用|考點自查|課前考點過關考點一不等式用符號“”(或“≥”),“≠”連接而成的式子叫做丌等式.使丌等式成立的未知數(shù)的全體叫做丌等式的解集,簡稱為丌等式的解.
2025-06-28 17:02
【摘要】第二章方程(組)與不等式(組)不等式(組)中考數(shù)學(福建專用)1.(2022福建,6,4分)不等式組?的解集是?()-3,
2025-06-30 07:03