【摘要】等差數(shù)列的前n項和(二)課時目標n項和的性質(zhì),并能靈活運用.n項和的最值問題.an與Sn的關系,能根據(jù)Sn求an.1.前n項和Sn與an之間的關系對任意數(shù)列{an},Sn是前n項和,Sn與an的關系可以表示為an=?????n=,n2.
2024-12-17 10:14
【摘要】2.等差數(shù)列的前n項和1.(1)對于任意數(shù)列{an},Sn=a1+a2+a3+?+an,叫做數(shù)列{an}的前n項的和.(2)Sn-Sn-1=an(n≥2),a1=S1(n=1).2.(1)等差數(shù)列{an}的前n項和公式為Sn=n(a1+an)2或Sn=na1+n(n-1)d2.(2)
2024-12-20 13:12
【摘要】第一篇:《等差數(shù)列的前n項和》教學設計 《等差數(shù)列的前n項和》 教學設計 教學內(nèi)容分析 本節(jié)課教學內(nèi)容是《普通高中課程標準實驗教科書·數(shù)學(5)》(人教A版)中第二章的第三節(jié)“等差數(shù)列的前n項...
2024-10-23 02:47
【摘要】等差數(shù)列的前n項和2.等差數(shù)列的前n項和公式:1()2nnnaaS??1.若已知數(shù)列{an}前n項和為Sn,則該數(shù)列的通項公式為S1,n=1Sn-Sn-1,n≥2an=一、復習3.若數(shù)列{an}為等差數(shù)列:1(1)2nnnad???2,
2024-11-30 12:17
【摘要】2.等差數(shù)列的前n項和學習目標預習導學典例精析欄目鏈接情景導入數(shù)學史上有一顆光芒四射的巨星,他與阿基米德、牛頓齊名,被稱為歷史上最偉大的三位數(shù)學家之一,他就是18世紀德國著名的數(shù)學家——高斯.高斯在上小學時,就能很快地算出1+2+3+…+1
2024-11-29 23:16
【摘要】等差數(shù)列的前n項和一.新課引入一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支。這個V形架上共放著多少支鉛筆?問題就是“”?1004321???????這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的?
2024-11-29 19:18
【摘要】等差數(shù)列的前n項和高一數(shù)學必修五第二章《數(shù)列》復習鞏固1.an=am+(n-m)d,在等差數(shù)列{an}中,mnpqaaaa????m+n=p+qa1+an=a2+an-1=a3+an-2=….例題講解例1在等差數(shù)列{an}中
2025-08-10 13:48
【摘要】等差數(shù)列的前n項和一、數(shù)列前n項和的意義數(shù)列{an}:a1,a2,a3,…,an,…我們把a1+a2+a3+…+an叫做數(shù)列{an}的前n項和,記作Sn.二、問題A?如圖,建筑工地上一堆圓木,從上到下每層的數(shù)目分別為1,2,3,……,10.問共有多少根
2024-10-25 20:23
【摘要】第2課時 等差數(shù)列及其前n項和1.理解等差數(shù)列的概念.2.掌握等差數(shù)列的通項公式與前n項和公式.3.能在具體的問題情境中識別數(shù)列的等差關系,并能用等差數(shù)列的有關知識解決相應的問題.4.了解等差數(shù)列與一次函數(shù)的關系. [對應學生用書P83]【梳理自測】一、等差數(shù)列的概念1.在等差數(shù)列{an}中,已知a1=1,a2+a3=
2025-06-17 00:37
【摘要】第4課時等差數(shù)列的前n項和n項和.n項和公式解決有關等差數(shù)列的問題.n項和公式的推導方法.高斯是數(shù)學發(fā)展史上有很大影響的偉大數(shù)學家之一.高斯十歲時數(shù)學老師出了一道題:1+2+3+?+99+100.老師剛寫完題目高斯就把解題用的小石板交給了老師,上面只有5050一個答案.當時
2024-12-20 02:37
【摘要】等差數(shù)列的前n項和復習數(shù)列的有關概念1…,按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,第2項用表示,第n項用表示,…,數(shù)列的一般形式可以寫成:
2024-11-21 12:24
【摘要】《等差數(shù)列前n項和》教案(高一年級第一冊·第三章第三節(jié))一、教材分析●教學內(nèi)容《等差
2025-04-26 07:45
【摘要】課題:等差數(shù)列前n項和公式(1)班級:姓名:學號:第學習小組【學習目標】掌握等差數(shù)列的前n項和的公式及推導該公式的數(shù)學思想方法,能運用等差數(shù)列的前n項和的公式求等差數(shù)列的前n項和.【課前預習】1.(1)你如何快速求出?100321??????
2024-12-02 01:05
【摘要】第六章數(shù)列二等差數(shù)列第1課時課題:(1)教學目標1、知識點:了解等差數(shù)列前項和的定義,了解倒序相加的原理,理解等差數(shù)列前項和公式推導的過程,掌握等差數(shù)列前項和的公式,記憶公式的兩種形式,并能運用公式解決簡單的問題.;2、能力訓練目標:(1)通過公式的推導和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題,解決問題的一般
2025-04-26 08:31
【摘要】等差數(shù)列的前n項和A組基礎鞏固1.在等差數(shù)列{an}中,S10=120,則a2+a9=()A.12B.24C.36D.48解析:S10=a1+a102=5(a2+a9)=120.∴a2+a9=24.答案:B2.設數(shù)列{an}是等差數(shù)列,且a2=-6,a8=6,Sn是
2024-12-20 20:22