【摘要】三角函數(shù)恒等變形的基本策略。(1)常值代換:特別是用“1”的代換,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。(2)項(xiàng)的分拆與角的配湊。如分拆項(xiàng):sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配湊角:α=(α+β)-β,β=-等。(3)降次與升次。(4)化弦(切)法。(4)引入輔助角。asinθ+bco
2025-07-03 20:23
【摘要】1、已知角的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線上,則( ?。ˋ)(B)(C)(D)2、設(shè),則(A) (B) (C) (D)3、若的值等于( )A.2 B.3 C.4 D.64、若,則A. B. C. D.5、函數(shù)是( ?。.最小正周期為的奇函數(shù)B.最小正周期為的偶函數(shù)
2025-04-16 22:39
【摘要】三角函數(shù)部分高考題,只需將函數(shù)的圖像(A)A.向左平移個(gè)長(zhǎng)度單位 B.向右平移個(gè)長(zhǎng)度單位C.向左平移個(gè)長(zhǎng)度單位 D.向右平移個(gè)長(zhǎng)度單位,則的最大值為(B)A.1 B. C. D.23.(D) (A) ?。ǎ拢 。ǎ茫 。ǎ模?,則的取值范圍是:(C)(A) ?。ǎ拢 。ǎ茫 ?/span>
2025-07-02 03:41
【摘要】平面向量與三角函數(shù)高考題選講教學(xué)任務(wù):1.復(fù)習(xí)三角函數(shù)有關(guān)公式;2.復(fù)習(xí)三角函數(shù)有關(guān)知識(shí)點(diǎn);3.作業(yè)題講評(píng).教學(xué)重點(diǎn):向量與三角函數(shù)整合問題歸類復(fù)習(xí).1.已知向量(Ⅰ)若,求的值;(Ⅱ)若求的值。
2024-08-19 16:10
【摘要】04年2.已知點(diǎn)1(6,2)M和2(1,7)M,直線7ymx??與線段12MM的交點(diǎn)M分有向線段12MM的比為3:2,則m的值為()A.23?B.32?C.41D.47.已知,,abc為非零的平面向量.甲:abac???,乙:bc?,則()
2024-09-05 11:50
【摘要】.,.....三角函數(shù)與解三角形1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能進(jìn)行弧度與角度的互化.2.三角函數(shù)(1)理解任意角三角函數(shù)(正弦、余弦、正切)的定義.(2)能利用單位圓中的三角函數(shù)線推導(dǎo)出,
2025-04-16 22:37
【摘要】三角函數(shù)任意角的概念弧長(zhǎng)與扇形面積公式角度制與弧度制同角三函數(shù)的基本關(guān)系任意角的三角函數(shù)誘導(dǎo)公式三角函數(shù)的圖象和性質(zhì)計(jì)算與化簡(jiǎn)證明恒等式已知三角函數(shù)值求角和角公式倍角公式差角公式應(yīng)用應(yīng)用應(yīng)用應(yīng)用應(yīng)用應(yīng)用應(yīng)用三角函數(shù)知識(shí)框架圖知
2025-04-25 12:49
【摘要】三角函數(shù)典型考題歸類1.根據(jù)解析式研究函數(shù)性質(zhì)例1(天津理)已知函數(shù).(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)求函數(shù)在區(qū)間上的最小值和最大值.【相關(guān)高考1】(湖南文)已知函數(shù).求:(I)函數(shù)的最小正周期;(II)函數(shù)的單調(diào)增區(qū)間.【相關(guān)高考2】(湖南理)已知函數(shù),.(I)設(shè)是函數(shù)圖象的一條對(duì)稱軸,求的值.(II)求函數(shù)的單調(diào)遞增區(qū)間.2.根據(jù)函數(shù)性質(zhì)確定函數(shù)解析式
2025-04-02 05:42
【摘要】約定用A,B,C分別表示△ABC的三個(gè)內(nèi)角,分別表示它們所對(duì)的各邊長(zhǎng)1.正弦定理:=.(R為△ABC外接圓半徑).△ABC的面積為S△ABC=2.余弦定理:.:角平分線分對(duì)邊所得兩段線段的比等于角兩邊之比.:若ABC則.::題組11.(1),判斷的形狀.(2)證明:(3)證明(4)證明:
2025-04-25 12:12
【摘要】三角函數(shù)的基本關(guān)系式倒數(shù)關(guān)系:商的關(guān)系:平方關(guān)系:tanα·cotα=1sinα·cscα=1cosα·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α?誘導(dǎo)
2025-07-01 12:13
【摘要】第二章三角、反三角函數(shù)一、考綱要求、弧度的意義,能正確進(jìn)行弧度和角度的互換。、余弦、正切的定義,了解余切、正割、余割的定義,掌握同角三角函數(shù)的基本關(guān)系式,掌握正弦、余弦的誘導(dǎo)公式,理解周期函數(shù)與最小正周期的意義。、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。,進(jìn)行簡(jiǎn)單三角函數(shù)式的化簡(jiǎn),求值和恒等式的證明。、余弦函數(shù),正切函數(shù)的圖像和性質(zhì),會(huì)用“五點(diǎn)法”畫正弦
2024-08-19 23:44
【摘要】三角函數(shù)??????xAysin一、選擇題:1.“”是“函數(shù)取得最大值”的()4x??sin2yx?A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件中,如果,,那么角等于
【摘要】的面積是30,內(nèi)角所對(duì)邊長(zhǎng)分別為,。(Ⅰ)求;(Ⅱ)若,求的值。設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間與極值。已知函數(shù)(Ⅰ)求的值;(Ⅱ)求的最大值和最小值設(shè)函數(shù),,,且以為最小正周期.(1)求;w_w(2)求的解析式;(3)已知,求的值.w_已知函數(shù)(I)求函數(shù)的最小正周期。(II)求函數(shù)的最大
2025-08-03 00:01
【摘要】第四章三角函數(shù)●網(wǎng)絡(luò)體系總覽●考點(diǎn)目標(biāo)定位、弧度的意義,能正確地進(jìn)行弧度與角度的換算.、余弦、正切的定義,并會(huì)利用與單位圓有關(guān)的三角函數(shù)線表示正弦、余弦和正切;了解任意角的余切、正割、余割的定義;掌握同角三角函數(shù)的基本關(guān)系式;掌握正弦、余弦的誘導(dǎo)公式.、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通過公式的推導(dǎo),了解它們的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能
2025-01-24 09:35
【摘要】三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A
2025-08-01 20:29