【正文】
? Subsonic and Supersonic Mach numbers – Keeping in mind these assumptions equation is good approximation () () 0??)1( 22222 ???????? yxM??0??)1( 2 ??????? ? yvxuM E q u at ion In viscid I r r o t a t i o n a l S m all P e r t u r b a t i o n In c om p r e ssi b le Not e s Navie r S tokes Hom og e n e ou s Re yn old s A ve rage d Navie r S tokes M od e led T u r b u l e n c e E u ler √ F u ll P o te n tial √ √ T r an son ic S m all Pe r turbation √ √ √ S u b so n ic, S u p e r son ic, S m all Pe r turbation √ √ √ Ac ou stic √ √ √ L ap lace √ √ √ Summary of monlyused equations and the corresponding assumption (常用控制方程及其相應假設小結 ): 求解速度勢方程的目的在于得到物體表面的壓強分布,進而得到氣動力。這時擾動速度 、 的值可大、可小,即 對于大擾動、小擾動都成立 。 0???n?????? Vxu? 0????yv?infinite boundary condition: wall boundary condition : 4) How to use? Once φ is known, all the other value flow variables are directly obtained as follows: (a0, T0, P0, r0, h0 are known quantities) 1. Calculate u and v: and xu ??? ?yv ??? ? a: ? ?100020222220221121??????????????????????????????????????????????????????????????TTppMTTavuaVMyxaa4. Calculate T, p, ρ: M: WHAT DOES THIS MEAN, WHAT DO WE DO NOW? ? 線性偏微分方程 : 偏微分方程分為線性和非線性 – 線性偏微分方程 : 方程未知數(shù) φ 以及未知數(shù)的所有導數(shù)只以線性形式存在,不存在交叉乘及平方等等 ? 可壓縮流動非線性速度勢的偏微分方程不存在解析解 – 借助于數(shù)值求解方法 ? 是否可以將非線性方程在一定的條件下,簡化為線性方程 (easy to solve)? 1. Slender bodies 細長體 2. Small angles of attack 小攻角 – 如果可以,就可以應用于翼型的研究中,并提供在亞音速可壓縮流中的定性和定量的特性 ? Next steps: – 介紹小擾動理論 (finite and small) – 在 2的條件下線化速度勢方程。 1)如果高亞音速流動流過翼型會發(fā)生什么 ? 2)壓縮性如何影響翼型的氣動特性? 3)如何分析和計算壓縮性的影響? 本章的目的是研究 M1時二維翼型的流動特性 ,這時不可壓假設不再成立 . Figure Road Map for . velocity potential equation Linearized velocity potential equation PrandtlGlauet Compressibilty correction Improved pressibilty Correction Critical Mach umber The area rule for transonic flow Supercritical airfoils DragDivergence Mach number: Sound Barrier 速度勢方程 線性化的速度勢方程 PrandtlGlauet壓縮性修正 改進的壓縮性修正 臨界馬赫數(shù) 跨音速面積律 超臨界翼型 Figure 11章路線圖 阻力發(fā)散馬赫數(shù) :音障 亞音速氣動特性 跨音速氣動特性 REVIEW Continuity Equation True for all flows: Steady or Unsteady, Viscous or Inviscid, Rotational or Irrotational 2D Inpressible Flows (Steady, Inviscid and Irrotational) 2D Compressible Flows (Steady, Inviscid and Irrotational) steady irrotational Laplace’s Equation (linear equation) Does a similar expression exist for pressible flows? Yes, but it is nonlinear ? ? 0?????? Vt ???? ?? ? 0000?????????????????????????????????yvyvxuxuVVVVVVt????????????????? ?000002?????????????????????????VVVVVt????? The Velocity Potential Equation(速度勢方程 ) ? ?000 22222222???????????????????????????????????????????????????????????????????????yyxxyxyyyxxxyvyvxuxuVyvxujyixjviuV??????????????????????????????STEP 1: VELOCITY POTENTIAL → CONTINUITY Flow is irrotational xponent yponent Continuity for 2D pressible flow Substitute velocity into continuity equation Grouping like terms Expressions for d?? STEP 2: MOMENTUM + ENERGY Euler’s (Momentum) Equation Substitute velocity potential Flow is isentropic: Change in pressure, dp, is related to change in density, d?, via a2 Substitute into momentum equation Changes in xdirection Changes in ydirection ? ? ? ???????????????????????????????????????????????????????????????????????????????????????????????????????????????222222222222222222222yyyxxayyxyxxaxyxdaddadpyxddpvudVddpV d Vdp???????????????????????RESULT 0))((2)(11)(112222222222 ????????????????????????????????yxyxayyaxxa???????Velocity Potential Equation: Nonlinear Equation Compressible, Steady, Inviscid and Irrotational Flows Note: This is one equation, with one unknown, ? a0 (as well as T0, P0, ?0, h0) are known constants of the flow Review: Inpressible, Steady, Inviscid and Irrotational Flows Velocity Potential Equation: Linear Equation 02 ?? ?2220 21????? Vaa ?In this equation , the speed of sound is also the function of φ (from ) : ?????????????? 22202 )()(21yxaa???結論: 1)速度勢方程是只有一個未知變量的偏微分方程( PDE); 2) 、動量方程和能量方程的綜合。這樣問題大大簡化。PART 3 Inviscid, Compressible Flow 無粘可壓縮流 鄧 磊 Email: 2022年 6月 2日星