【摘要】等差數(shù)列的前n項(xiàng)和高一數(shù)學(xué)必修五第二章《數(shù)列》復(fù)習(xí)鞏固1.an=am+(n-m)d,在等差數(shù)列{an}中,mnpqaaaa????m+n=p+qa1+an=a2+an-1=a3+an-2=….例題講解例1在等差數(shù)列{an}中
2025-08-10 13:48
【摘要】欄目導(dǎo)航課前預(yù)習(xí)課堂探究點(diǎn)擊進(jìn)入課后作業(yè)
2024-08-20 11:00
【摘要】等差數(shù)列的前n項(xiàng)和復(fù)習(xí)數(shù)列的有關(guān)概念1…,按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,第2項(xiàng)用表示,第n項(xiàng)用表示,…,數(shù)列的一般形式可以寫成:
2024-11-21 12:24
【摘要】(理解等差數(shù)列的概念/掌握等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式/了解等差數(shù)列與一次函數(shù)的關(guān)系)第五單元數(shù)列等差數(shù)列及其前n項(xiàng)和1.等差數(shù)列:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列(arithmeticsequence),這個(gè)常數(shù)就叫做等差數(shù)列
2025-05-24 17:18
【摘要】=(1100)(299)(5051)??????原式那么S=1+2+3+…+997+998+999=?倒序相加法求等差數(shù)列前n項(xiàng)和:)?梯上底下底高(+S=2解:3)1313??11371(a+a2aS===52.2
【摘要】復(fù)習(xí)回顧通項(xiàng)公式:等差數(shù)列中:前n項(xiàng)和公式:例題講解例1.求集合中元素的個(gè)數(shù),并求這些元素的和。解:代公式可得或由,即或答:集合M中共有14個(gè)元素,它們的和等于7
2024-11-21 05:34
【摘要】等差數(shù)列前n項(xiàng)和公式復(fù)習(xí)回顧(1)等差數(shù)列的通項(xiàng)公式:已知首項(xiàng)a1和公差d,則有:an=a1+(n-1)d已知第m項(xiàng)am和公差d,則有:an=am+(n-m)d,d=(an-am)/(n-m)
2024-08-30 20:34
【摘要】等差數(shù)列的前n項(xiàng)和公式一新課引入一個(gè)堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個(gè)V形架上共放著多少支鉛筆?播放課件一個(gè)堆放小球的V形架問題就是“”?1004321???????這是小學(xué)時(shí)就知道的一個(gè)故事,
2024-10-15 17:22
【摘要】安宜高級中學(xué)盧其明(第二課時(shí))知識回顧::an=a1+(n-1)d;:(1)an-am=(n-m)d;(2)若m+n=p+q,則am+an=ap+aq。n項(xiàng)和公式:例{an}的前10項(xiàng)的和是30,前20項(xiàng)的和是100,求前30項(xiàng)的和。變題{an}的前m
2024-11-21 12:47
【摘要】n項(xiàng)和(一)故事:小王在楊春國際大酒店擔(dān)任大堂副理,月工資5000元。由于他工作業(yè)績非常好,總經(jīng)理決定給他加薪。但有兩種方案供小王選擇,方案一:一次性每年增加2022元,方案二:在現(xiàn)有工資的基礎(chǔ)上,第一個(gè)月增加20元,以后每月比上月多增加20元。小王不知如何選擇,請你幫助選一種。生活中的問題:
2025-05-08 04:01
【摘要】《等差數(shù)列前n項(xiàng)和》教案(高一年級第一冊·第三章第三節(jié))一、教材分析●教學(xué)內(nèi)容《等差
2025-04-26 07:45
【摘要】第一篇:等差數(shù)列的前n項(xiàng)和教案 等差數(shù)列的前n項(xiàng)和 一:教材分析 本節(jié)課內(nèi)容位于高中人教版必修五第二章第三節(jié)。它是在學(xué)習(xí)了等差數(shù)列的基礎(chǔ)上來研究和討論的,是繼等差數(shù)列之后的又一重要的概念。主要利...
2024-10-23 17:55
【摘要】第六章數(shù)列二等差數(shù)列第1課時(shí)課題:(1)教學(xué)目標(biāo)1、知識點(diǎn):了解等差數(shù)列前項(xiàng)和的定義,了解倒序相加的原理,理解等差數(shù)列前項(xiàng)和公式推導(dǎo)的過程,掌握等差數(shù)列前項(xiàng)和的公式,記憶公式的兩種形式,并能運(yùn)用公式解決簡單的問題.;2、能力訓(xùn)練目標(biāo):(1)通過公式的推導(dǎo)和公式的運(yùn)用,使學(xué)生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認(rèn)識問題,解決問題的一般
2025-04-26 08:31
【摘要】1、等差數(shù)列{an}前n項(xiàng)和公式:===。等差數(shù)列的前n項(xiàng)之和公式可變形為,若令A(yù)=,B=a1-,則=An2+Bn.在解決等差數(shù)列問題時(shí),如已知,a1,an,d,,n中任意三個(gè),可求其余兩個(gè)。2、等差數(shù)列{an}前n項(xiàng)和的性質(zhì)性質(zhì)1:Sn,S2n-Sn,S3n-S2n,…也在等差數(shù)列,公差為n2d性質(zhì)2:(1)若項(xiàng)數(shù)為偶數(shù)2n,則S2n=n(a1+a2n)=n(an
2025-04-26 07:58
【摘要】等差數(shù)列及前n項(xiàng)和教學(xué)目標(biāo):求和公式的性質(zhì)及應(yīng)用,Sn與an的關(guān)系以及數(shù)列求和的方法。教學(xué)重點(diǎn):求和公式的性質(zhì)應(yīng)用。難點(diǎn):求和公式的性質(zhì)運(yùn)用以及數(shù)列求和的方法引入??2n11nn-1ddS=na+d=n+a-n222??????可見d≠0時(shí),
2025-05-24 17:19