【摘要】待定系數(shù)法求解析式一、知識(shí)要點(diǎn)近年高頻考點(diǎn)中考頻率所占分值1、用待定系數(shù)法求解二次函數(shù)解析式êêêêê5~10分1、設(shè)一般式y(tǒng)=ax2+bx+c_用待定系數(shù)法求二次函數(shù)解析式2、設(shè)頂點(diǎn)式y(tǒng)=a(x-h(huán))2+k_用待定系數(shù)法求二次函數(shù)
2025-04-02 06:26
【摘要】二次函數(shù)的圖像與性質(zhì)一、二次函數(shù)的基本形式1.二次函數(shù)基本形式:的性質(zhì):a的絕對(duì)值越大,拋物線的開(kāi)口越小。的符號(hào)開(kāi)口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)向上軸時(shí),隨的增大而增大;時(shí),隨的增大而減??;時(shí),有最小值.向下軸時(shí),隨的增大而減??;時(shí),隨的增大而增大;時(shí),有最大值.2.的性質(zhì):上加
2025-04-25 13:11
【摘要】二次函數(shù)應(yīng)用題備課教案授課時(shí)間:20年月日時(shí)分至?xí)r分備課時(shí)間:20年月日星期:年級(jí):初三課時(shí):課題:應(yīng)用題學(xué)員姓名:教師姓名:陳老師教學(xué)目標(biāo)1、理解并掌握二次函數(shù)的基本性質(zhì);2、學(xué)會(huì)函數(shù)解應(yīng)用題的一般方法,會(huì)找變量之間的關(guān)系;3、會(huì)求二次函數(shù)的最大值,能運(yùn)用二次函數(shù)求
2025-04-25 13:10
【摘要】第1頁(yè)§二次函數(shù)一、選擇題1.(2022·浙江溫州模擬(2),1,4分)若二次函數(shù)y=2x2的圖象經(jīng)過(guò)點(diǎn)P(1,a),則a的值為()B.1C.2D.4解析把P(1,a)代入y=2x2得a=2×1=2.答案C
2025-01-16 23:12
【摘要】數(shù)學(xué)二次函數(shù)及其應(yīng)用一、填空題:1、拋物線y=-x2+1的開(kāi)口向____。2、拋物線y=2x2的對(duì)稱軸是____。3、函數(shù)y=2(x-1)2圖象的頂點(diǎn)坐標(biāo)為____。4、將拋物線y=2x2向下平移2個(gè)單位,所得的拋物線的解析式為________。5、函數(shù)y=x2+bx+3的圖象經(jīng)過(guò)點(diǎn)(-1,
2024-11-24 02:03
【摘要】二次函數(shù)圖象對(duì)稱性的應(yīng)用一、幾個(gè)重要結(jié)論:1、拋物線的對(duì)稱軸是直線__________。2、對(duì)于拋物線上兩個(gè)不同點(diǎn)P1(),P2(),若有,則P1,P2兩點(diǎn)是關(guān)于_________對(duì)稱的點(diǎn),且這時(shí)拋物線的對(duì)稱軸是直線_____________;反之亦然。3、若拋物線與軸的兩個(gè)交點(diǎn)是A(,0),B(,0),則拋物線的對(duì)稱軸是__________(此結(jié)論是第2條性質(zhì)的特例,
2025-04-25 13:00
【摘要】初中數(shù)學(xué)二次函數(shù)復(fù)習(xí)專題〖知識(shí)點(diǎn)〗二次函數(shù)、拋物線的頂點(diǎn)、對(duì)稱軸和開(kāi)口方向〖大綱要求〗1.理解二次函數(shù)的概念;2.會(huì)把二次函數(shù)的一般式化為頂點(diǎn)式,確定圖象的頂點(diǎn)坐標(biāo)、對(duì)稱軸和開(kāi)口方向,會(huì)用描點(diǎn)法畫(huà)二次函數(shù)的圖象;3.會(huì)平移二次函數(shù)y=ax2(a≠0)的圖象得到二次函數(shù)y=a(ax+m)2+k的圖象,了解特殊與一般相互聯(lián)系和轉(zhuǎn)化的思想;4.會(huì)用待定系數(shù)法求二次函數(shù)的
2025-04-25 12:29
【摘要】二次函數(shù)提高訓(xùn)練(12)一、二次函數(shù)的定義例1、已知函數(shù)y=(m-1)xm2+1+5x-3是二次函數(shù),求m的值。若函數(shù)y=(m2+2m-7)x2+4x+5是關(guān)于x的二次函數(shù),則m的取值范圍為。二、圖像的應(yīng)用例2.已知拋物線,(1)用配方法求它的頂點(diǎn)坐標(biāo)和對(duì)稱軸(2)若該拋物線與x軸的兩個(gè)交點(diǎn)為A、B,求線段AB的長(zhǎng).1、拋物線的頂點(diǎn)坐標(biāo)為(
2025-04-02 06:25
【摘要】第一篇:二次函數(shù)復(fù)習(xí) 二次函數(shù)復(fù)習(xí)(1)教學(xué)反思 在二次函數(shù)復(fù)習(xí)這節(jié)課中,圍繞(1)二次函數(shù)的定義(2)二次函數(shù)的圖像、性質(zhì)與a、b、c的關(guān)系(3)二次函數(shù)解析式的求法(4)數(shù)形結(jié)合這四個(gè)知識(shí)點(diǎn)進(jìn)...
2024-10-17 21:19
【摘要】E1-071n(>3)名乒乓球選手單打比賽若干場(chǎng)后,任意兩個(gè)選手已賽過(guò)的對(duì)手恰好都不完全相同,試證明,總可以從中去掉一名選手,而使在余下的選手中,任意兩個(gè)選手已賽過(guò)的對(duì)手仍然都不完全相同.【題說(shuō)】1987年全國(guó)聯(lián)賽二試題3.【證】用英文字母表示選手,用MA表示A的對(duì)手集,并假定A是賽過(guò)場(chǎng)次最多(若有并列的可任選一名)的選手.若命題不
2024-11-23 04:14
【摘要】中考二次函數(shù)專題復(fù)習(xí)教師寄語(yǔ):二次函數(shù)這一章在初中數(shù)學(xué)中占有重要地位,,二次函數(shù)在中考命題中一直是“重頭戲”,根據(jù)對(duì)近幾年中考試卷的分析,預(yù)計(jì)今年中考中對(duì)二次函數(shù)的考查題型有低檔的填空題、選擇題,中高檔的解答題,分值一般為9~15分,除考查定義、識(shí)圖、性質(zhì)、求解析式等常規(guī)題外,還會(huì)出現(xiàn)與二次函數(shù)有關(guān)的貼近生活實(shí)際的應(yīng)用題,閱讀理解題和探究題,二次函數(shù)與其他函數(shù)方程、不等式、幾何知識(shí)的綜合在壓
2025-04-25 12:57
【摘要】中學(xué)美術(shù)課水彩畫(huà)技法教學(xué)摘要:水彩畫(huà)在中學(xué)美術(shù)教育中占據(jù)著重要的地位,它不僅可以提升中學(xué)生的造型能力、色彩能力,同時(shí)也可以強(qiáng)化他們的審美素養(yǎng)。這里,筆者將結(jié)合自己的教學(xué)經(jīng)驗(yàn),來(lái)談一談水彩畫(huà)技法教學(xué)的一點(diǎn)心得,以期大方之家給予批評(píng)指正。關(guān)鍵詞:中學(xué)美術(shù)課;水彩畫(huà);技法教學(xué)一、水彩畫(huà)技法指導(dǎo)學(xué)生在畫(huà)水彩畫(huà)之前需要有這樣的理
2024-12-04 01:47
【摘要】1二次函數(shù)期末復(fù)習(xí)一、基礎(chǔ)訓(xùn)練1、如果函數(shù)y=(m+2)x|m|+2x-1是二次函數(shù),那么m的值一定是.2、拋物線y=2(x+2)2﹣3的頂點(diǎn)坐標(biāo)為,將拋物線向左平移1個(gè)單位,再向下平移3個(gè)單位后所得拋物線的解析式為;關(guān)于x軸對(duì)稱所得拋物線的解析式
2024-12-03 23:43
【摘要】二次根式復(fù)習(xí)講義知識(shí)點(diǎn)一:二次根式的概念【知識(shí)要點(diǎn)】二次根式的定義:形如的式子叫二次根式,其中叫被開(kāi)方數(shù),只有當(dāng)是一個(gè)非負(fù)數(shù)時(shí),才有意義.【典型例題】【例1】下列各式(1),其中是二次根式的是_________(填序號(hào)).舉一反三:1、下列各式中,一定是二次根式的是()A、B、C、D、2、在、、、、中是二次根式的個(gè)數(shù)有
【摘要】二次函數(shù)中考復(fù)習(xí)專題教學(xué)目標(biāo):(1)了解二次函數(shù)的概念,掌握二次函數(shù)的圖象和性質(zhì),能正確畫(huà)出二次函數(shù)的圖象,并能根據(jù)圖象探索函數(shù)的性質(zhì);(2)能根據(jù)具體條件求出二次函數(shù)的解析式;運(yùn)用函數(shù)的觀點(diǎn),分析、探究實(shí)際問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律。教學(xué)重點(diǎn)u二次函數(shù)的三種解析式形式u二次函數(shù)的圖像與性質(zhì)教學(xué)難點(diǎn)u二次函數(shù)與其他函數(shù)共存問(wèn)題u根據(jù)二次函數(shù)圖像
2025-04-26 00:56