【摘要】華夏學(xué)校資料庫1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-13 05:14
【摘要】高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為
【摘要】APCBOEF16.如圖,已知⊙O所在的平面,是⊙O的直徑,,C是⊙O上一點,且,與⊙O所在的平面成角,是中點.F為PB中點.(1)求證:;(2)求證:;(3)求三棱錐B-PAC的體積.17.如圖,四面體ABCD中,O、E分別是BD、BC的中點, (1)求證:平面BCD; (2)求異面直線AB與CD所成角的余弦值;
2025-01-23 11:10
【摘要】立體幾何復(fù)習(xí)學(xué)案 班級學(xué)號姓名 【課前預(yù)習(xí)】 1.已知是兩條不同的直線,是兩個不同的平面,有下列四個命題: ①若,且,則;②若,且,則; ③若,且,則;④若,且,則. 則所有正確命題的序號...
2024-10-09 19:06
【摘要】第一章立體幾何初步特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)柱體、錐體、臺體的體積公式(4)球體的表面積和體積公式:V=;S=第二章直線與平面的位置關(guān)系、直線、平面之間的位置關(guān)系1平面含義:平面是無限延展的2三個公理:(1)公理1:如果一
2025-04-13 05:11
【摘要】立體幾何復(fù)習(xí)學(xué)案班級學(xué)號姓名【課前預(yù)習(xí)】1.已知,lm是兩條不同的直線,,??是兩個不同的平面,有下列四個命題:①若l??,且???,則l??;②若l??,且//??,則l??;③若l??
2024-12-02 01:07
【摘要】大成培訓(xùn)立體幾何強(qiáng)化訓(xùn)練,在四面體ABCD中,CB=CD,AD⊥BD,點E,F分別是AB,BD的中點.求證:(Ⅰ)直線EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.,在直三棱柱ABC-A1B1C1中,E、F分別是A1B、A1C的中點,點D在B1C1上,A
【摘要】高中數(shù)學(xué)立體幾何大題訓(xùn)練,在長方體中,AB=AD=1,AA1=2,M是棱CC1的中點(Ⅰ)求異面直線A1M和C1D1所成的角的正切值;(Ⅱ)證明:平面ABM⊥平面A1B1M1,在矩形中,點分別在線段上,.沿直線將翻折成,使平面.(Ⅰ)求二面角的余弦值;(Ⅱ)點分別在線段上,若沿直線將四邊形向上翻折,使與重合,求線段的長。,直三棱柱中
【摘要】空間向量與立體幾何經(jīng)典題型與答案1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標(biāo)原點長為單位長度,如圖建立空間直角坐標(biāo)系,則各點坐標(biāo)為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在
2025-06-27 13:50
【摘要】高中數(shù)學(xué)立體幾何知識點總結(jié) 數(shù)學(xué)立體幾何知識點 :掌握三個公理及推論,會說明共點、共線、共面問題。 能夠用斜二測法作圖。 ?。浩叫?、相交、異面的概念; 會求異面直線所成...
2024-12-05 02:12
【摘要】第一篇:高中數(shù)學(xué)立體幾何證明公式 線線平行→線面平行如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。 線面平行→線線平行如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這...
2024-10-27 00:25
【摘要】向量法解立體幾何1、直線的方向向量和平面的法向量⑴.直線的方向向量:若A、B是直線上的任意兩點,則為直線的一個方向向量;與平行的任意非零向量也是直線的方向向量.⑵.平面的法向量:若向量所在直線垂直于平面,則稱這個向量垂直于平面,記作,如果,那么向量叫做平面的法向量.⑶.平面的法向量的求法(待定系數(shù)法):①建立適當(dāng)?shù)淖鴺?biāo)系.②設(shè)平面的法向量為.③求出平面內(nèi)兩
2025-04-13 05:16
【摘要】立體幾何專題之三垂線定理北京大學(xué)光華管理學(xué)院何洋寫在前面的話?高三同學(xué)在對立體幾何的基本知識進(jìn)行了系統(tǒng)的復(fù)習(xí)之后,對于比較重要的定理、概念以及在學(xué)習(xí)過程中感到難于掌握的問題進(jìn)行綜合性的專題復(fù)習(xí)是很必要的。在專題復(fù)習(xí)中應(yīng)通過分類、總結(jié),提高對所學(xué)內(nèi)容的認(rèn)識和理解。今天我和大家共同探討高中立體幾何中的三垂線問題。寫在前面的
2025-05-16 12:06
【摘要】高中數(shù)學(xué)之立體幾何平面的基本性質(zhì)公理1如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在這個平面內(nèi).公理2如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線.公理3經(jīng)過不在同一直線上的三個點,有且只有一個平面.根據(jù)上面的公理,可得以下推論.推論1經(jīng)過一條直線和這條直線外一點,有且只有一個平面.推論2經(jīng)過兩條相交直線,有
2024-08-23 19:31
【摘要】37第五講立體幾何立體幾何作為高中數(shù)學(xué)的重要組成部分之一,當(dāng)然也是每年的全國聯(lián)賽的必然考查內(nèi)容。競賽數(shù)學(xué)當(dāng)中的立幾題往往會以中等難度試題的形式出現(xiàn)在一試中,考查的內(nèi)容常會涉及角、距離、體積等計算。解決這些問題常會用到轉(zhuǎn)化、分割與補形等重要的數(shù)學(xué)思想方法。一、立體幾何中的排列組合問題。例一、(1991年全國聯(lián)賽一試)由一個正方體的三個頂點
2025-01-19 00:11