【摘要】一、折疊四邊形矩形ABCD如圖折疊,使點D落在BC邊上的點F處,已知AB=8,BC=10,求折痕AE的長。ABCDFE折疊矩形紙片,先折出折痕對角線BD,在繞點D折疊,使點A落在BD的E處,折痕DG,若AB=2,BC=1,求AG的長。DAGBCE;人力資源
2024-08-31 01:02
【摘要】一、折疊四邊形矩形ABCD如圖折疊,使點D落在BC邊上的點F處,已知AB=8,BC=10,求折痕AE的長。ABCDFE折疊矩形紙片,先折出折痕對角線BD,在繞點D折疊,使點A落在BD的E處,折痕DG,若AB=2,BC=1,求AG的長。DAGBCE長方形ABC
2024-11-18 13:14
【摘要】一、折疊四邊形折疊矩形紙片,先折出折痕對角線BD,在繞點D折疊,使點A落在BD的E處,折痕DG,若AB=2,BC=1,求AG的長。DAGBCE矩形ABCD如圖折疊,使點D落在BC邊上的點F處,已知AB=8,BC=10,求折痕AE的長。ABCDFE矩形ABCD
2024-11-18 12:54
【摘要】方法歸納利用勾股定理解決折疊問題一、利用勾股定理解決平面圖形的折疊問題【例1】如圖,有一張直角三角形紙片,兩直角邊AC=5cm,BC=10cm,將△ABC折疊,使點B與點A重合,折痕為DE,則CD的長為()A.cmB.cmC.cmD.cm【分析】圖中CD在R
2025-04-03 03:25
【摘要】HK版八年級下階段核心技巧巧用勾股定理解折疊問題第18章勾股定理4提示:點擊進(jìn)入習(xí)題答案顯示123A見習(xí)題見習(xí)題見習(xí)題1.【中考·泰安】如圖①是一直角三角形紙片,∠A=30°,BC=4cm,將其折疊,使點
2025-03-18 12:18
【摘要】利用勾股定理解決折疊問題的教學(xué)設(shè)計一、內(nèi)容和內(nèi)容解析1、內(nèi)容利用勾股定理求解折疊問題中的線段長度2、內(nèi)容解析勾股定理是第十七章的內(nèi)容,它指出了直角三角形三邊之間的數(shù)量關(guān)系,這就搭建起了幾何圖形和數(shù)量關(guān)系之間的一座橋梁,從而發(fā)揮了重要的作用。勾股定理不僅在平面幾何中是重要的定理,而且在三角形、解析幾何、微積分中都是理論基礎(chǔ),沒有勾股定理,就難以建立起整個數(shù)學(xué)的大廈。因此,勾股
2025-04-02 12:44
【摘要】勾股定理的應(yīng)用1——圖形的翻折的導(dǎo)學(xué)案一、直角三角形的折疊問題展示直角三角形紙片1.已知△ABC中,∠B=90°,AB=4,BC=3,則AC=斜邊AC邊上的高AD=折疊1:將△ABC折疊,使點A與B重合(如圖1),則圖中有哪些相等的線段?求BD折疊2:將△ABC折疊,使點A與C重合(如圖2),(1
2025-07-01 03:47
【摘要】第1頁共3頁初中數(shù)學(xué)勾股定理之折疊問題、整體代換基礎(chǔ)題一、單選題(共10道,每道10分),有一個直角三角形紙片,兩直角邊AC=3,BC=4,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?()B.2C.D.3
2024-09-01 13:27
【摘要】第一篇:勾股定理課本證明法 勾股定理 課本的證明法 abbaacaacabbcbbbcabaabccba 圖一中 正方形的面積可以用 S=(a+b)(a+b)=(a+b)2=a2+2ab+...
2024-11-04 18:24
【摘要】1思考1,2,思考4主要知識點思考323思考24思考35思考46練習(xí)78
2024-11-21 09:35
【摘要】勾股定理和勾股定理逆定理經(jīng)典例題題型一:直接考查勾股定理例1在△ABC中,∠C=90°(1)已知AC=6,BC=8,求AB的長;A(2)已知AB=17,AC=15,求BC的長.BC題型二:利用勾股定理測量長度1、如果梯子的底端離建筑物9m,那么15m長的梯子可以到達(dá)建筑物的高度是多少米?DABC2、如圖
2025-04-02 13:00
【摘要】第1頁共2頁八年級數(shù)學(xué)勾股定理鞏固提高(等積變換、折疊專題、整體代換)基礎(chǔ)練習(xí)一、單選題(共5道,每道20分)Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,則Rt△ABC的面積是()△ABC中,AB=13,AC=15,高AD
2024-08-23 09:23
【摘要】1對1個性化教案學(xué)生陳桂浩學(xué)校年級教師張玉妮授課日期授課時段課題勾股定理的逆定理與應(yīng)用重點難點1、勾股定理及應(yīng)用2、用勾股定理證明一個三角形是直角三角形教學(xué)步驟及教學(xué)內(nèi)容導(dǎo)入—【知識點回
2025-07-01 03:44
【摘要】ABCABC(圖中每個小方格代表一個單位面積)圖1-1圖1-2(1)觀察圖1-1正方形A中含有個小方格,即A的面積是個單位面積。正方形B的面積是個單位面積。正方形C的面積是個單位面積。
2024-08-16 17:39
【摘要】勾股定理逆定理的應(yīng)用檢測題.如圖6,甲乙兩船從港口A同時出發(fā),甲船以16海里/時速度向北偏東50°航行,乙船以12海里/時向南偏東方向航行,3小時后,甲船到達(dá)C島,、B兩島相距60海里,問乙船出發(fā)后的航向是南偏東多少度?(10分)圖65.如圖,△ABC的三邊分別為AC=5,BC=12,AB=13,將△ABC沿AD折疊,使AC落在AB上,求
2025-04-02 13:01