【摘要】歸納:分式方程分式方程及其解法學(xué)習(xí)目標(biāo):;。重點(diǎn):分式方程及其解法.難點(diǎn):分式方程產(chǎn)生增根的原因.學(xué)習(xí)過程:一、復(fù)習(xí)回顧:??二、新課導(dǎo)入:問題:一艘輪船在靜水中的最大航速為30千米/時(shí)
2025-04-25 13:14
【摘要】數(shù)學(xué)學(xué)科導(dǎo)學(xué)案(第次課)教師:學(xué)生:年級(jí):八日期:星期:時(shí)段:課題分式方程的應(yīng)用學(xué)情分析教學(xué)目標(biāo)與考點(diǎn)分析1、能夠根據(jù)實(shí)際問題中的數(shù)量關(guān)系,準(zhǔn)確列分式方程解決問題;2、會(huì)將有關(guān)實(shí)際問題轉(zhuǎn)化成分式方程來解決,感悟分式方程是反映現(xiàn)實(shí)數(shù)量關(guān)系的一種模型;3、培養(yǎng)學(xué)生
2025-07-06 13:18
【摘要】精品word你我共享【自主領(lǐng)悟】1.當(dāng)______時(shí),的值等于.2.當(dāng)______時(shí),的值與的值相等.3.若方程的解是最小的正整數(shù),則的值為________.4.下列關(guān)于的方程,是分式方程的是()A.B.C.D.5.若與互為相反數(shù),則的值為
2025-04-02 06:39
【摘要】一、二課時(shí):分式的運(yùn)算與分式方程(1)分式的乘除與乘方練習(xí)一、選擇題1.(福州中考)下列運(yùn)算正確的是( ?。〢.a?a2=a3B.(a2)3=a5C.D.a3÷a3=a2.(包頭中考)化簡其結(jié)果是( ?。〢.-2 B.2 C. D.3.下列計(jì)算過程中,正確的是()A. B.
2025-07-06 13:13
【摘要】分式易考題型※【典例剖析】例1(分式概念)(1)當(dāng)x時(shí),分式無意義;(2)當(dāng)x時(shí),分式的值為零.隨堂練習(xí)11要使式子÷有意義,x的取值應(yīng)為。2、當(dāng)x時(shí),分式的值為0。3、使分式有意義的a的取值是()A、a≠1B、a≠±
【摘要】第七講分式方程和無理方程的解法初中大家已經(jīng)學(xué)習(xí)了可化為一元一次方程的分式方程的解法.本講將要學(xué)習(xí)可化為一元二次方程的分式方程的解法以及無理方程的解法.并且只要求掌握(1)不超過三個(gè)分式構(gòu)成的分式方程的解法,會(huì)用”去分母”或”換元法”求方程的根,并會(huì)驗(yàn)根;(2)了解無理方程概念,掌握可化為一元二次方程的無理方程的解法,會(huì)用”平方”或”換元法”求根,并會(huì)驗(yàn)根.一、可化為一元二次方程的分式方
2025-07-02 04:06
【摘要】分式方程應(yīng)用題分類解析一、營銷類應(yīng)用性問題例1某校辦工廠將總價(jià)值為2000元的甲種原料與總價(jià)值為4800元的乙種原料混合后,,,?解:元,元,混合后的總價(jià)值為(2000+4800)元,混合后的重量為斤,甲種原料的重量為,乙種原料的重量為,依題意,得:+=,解得,經(jīng)檢驗(yàn),是原方程的根,所以.二、工程類應(yīng)用性問題例2某工程由甲、乙兩隊(duì)合
【摘要】開心果初三年級(jí)總復(fù)習(xí)專題輔導(dǎo)材料第5期輔導(dǎo)時(shí)間:3月23日分式及分式方程復(fù)習(xí)專題一、知識(shí)要點(diǎn)回顧(一)分式1.分式概念一般的,如果A、B表示兩個(gè)整式,并且B中含有字母,,B叫做分母.分式有意義的條件:分式的分母不為0;分式無意義的條件:分式的分母為0;分式的值為0的條件:分式的分子為0,且分式
2025-04-25 23:44
【摘要】分式的化簡中考題集錦先化簡,再求值:1、先化簡,再求值:,其中x=-2.2、先化簡,再求值:(-)÷,其中x滿足x2-x-1=0.3、先化簡,再求值:,其中.4、先化簡,再求值:,其中.5、先化簡,再求值:6、先化簡,然后從不等組的解集中,選取一個(gè)你認(rèn)為符合題意的x的值代入求值.7、先化簡,再求值:,其中a=-1.
2025-04-02 12:20
【摘要】全國中考信息資源門戶網(wǎng)站分式方程練習(xí)題及答案一、選擇題(每小題3分,共30分)1.下列式子是分式的是() A.B. C.D.2.下列各式計(jì)算正確的是() A.B.C.D.3.下列各分式中,最簡分式是() A.B.C.D.4.化簡
2025-07-01 23:24
【摘要】四重五步學(xué)習(xí)法——讓孩子終生受益的好方法分式方程的解法及應(yīng)用一、目標(biāo)與策略明確學(xué)習(xí)目標(biāo)及主要的學(xué)習(xí)方法是提高學(xué)習(xí)效率的首要條件,要做到心中有數(shù)!學(xué)習(xí)目標(biāo):l分式方程的概念以及解法;l分式方程產(chǎn)生增根的原因;l分式方程的應(yīng)用題。重點(diǎn)難點(diǎn):l重點(diǎn)
2025-07-05 06:25
【摘要】讓更多的孩子得到更好的教育分式方程的解法及應(yīng)用(提高)一、目標(biāo)與策略明確學(xué)習(xí)目標(biāo)及主要的學(xué)習(xí)方法是提高學(xué)習(xí)效率的首要條件,要做到心中有數(shù)!學(xué)習(xí)目標(biāo):l了解分式方程的概念和檢驗(yàn)根的意義,會(huì)解可化為一元一次方程的分式方程.l會(huì)列出分式方程解簡單的
2025-07-01 23:21
【摘要】分式方程練習(xí)題一;填空題1.當(dāng)______時(shí),的值等于.2.當(dāng)______時(shí),的值與的值相等.3.若與互為相反數(shù),則可得方程___________,解得_________.4.若方程的解是最小的正整數(shù),則的值為________.5.分式方程的解是_________6.若關(guān)于的分式方程無解,則.二、選擇題7.下列方程中是分式方程的是(
2025-04-13 03:45
【摘要】分式方程與無理方程(非常規(guī))例1、求方程x+=4+的實(shí)數(shù)解例2、解方程+=(a>b)例3、解方程+=x例4、解方程+2+3=(x+y+z)例5、解方程+=+例6、求方程的整數(shù)解2+=例7、已知實(shí)數(shù)x1,x2,???xn滿足==???=,x1+x2+???xn+++???+=。求x1例8、已知實(shí)數(shù)a,b,c,
2025-07-03 00:50
【摘要】分式方程應(yīng)用題專題復(fù)習(xí)一.行程問題(1)一般行程問題1、從甲地到乙地有兩條公路:一條是全長600Km的普通公路,另一條是全長480Km的告訴公路。某客車在高速公路上行駛的平均速度比在普通公路上快45Km,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車由高速公路從甲地到乙地所需要的時(shí)間。2、我軍某部由駐地到距離30千米的