【摘要】《微積分I》期末復(fù)習(xí)題說(shuō)明:本復(fù)習(xí)題僅供參考,部分積分題目不必做. 復(fù)習(xí)時(shí)應(yīng)以教材為本,特別是例題和習(xí)題.一、判斷題1、兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量。()2、無(wú)界數(shù)列必發(fā)散。()3、可導(dǎo)的奇函數(shù)的導(dǎo)數(shù)為偶函數(shù)。()4、函數(shù)在其拐點(diǎn)處的二階導(dǎo)數(shù)有可能不存在。()5、閉區(qū)間上的連續(xù)函數(shù)是可積的。()6、無(wú)窮大量與有界量之積仍為無(wú)
2025-04-26 01:15
【摘要】典型例題例1.)16(log2)1(的定義域求函數(shù)xyx???解,0162??x,01??x,11??x????????214xxx,4221????xx及).4,2()2,1(?即例2).(.1,0,2)1()(xfxxxxx
2025-05-06 03:28
【摘要】第三章導(dǎo)數(shù)與微分outline?求導(dǎo):基本求導(dǎo)公式、復(fù)合函數(shù)求導(dǎo)、對(duì)數(shù)求導(dǎo)、分段函數(shù)求導(dǎo)、隱函數(shù)求導(dǎo)、反函數(shù)求導(dǎo)?微分:使用微分公式估值、求函數(shù)微分、求微分關(guān)系中的未知函數(shù)f(x)、參數(shù)方程求導(dǎo)法則、高階導(dǎo)數(shù)求取第一部分求導(dǎo)1、基本求導(dǎo)公式第一部分求導(dǎo)(1)y=(ax+b)/(cx+d)的導(dǎo)數(shù)
2024-08-07 17:58
【摘要】微積分(上)知識(shí)點(diǎn)微積分(上)復(fù)習(xí)2/58微積分(上)第一章函數(shù)函數(shù)的兩要素:定義域Df和對(duì)應(yīng)規(guī)則f,由f[?(x)]求f(x)奇偶性、單調(diào)性、有界性與周期性本義反函數(shù)、矯形反函數(shù))(1yfx??)(1xfy??單調(diào)函數(shù)一定存在反函數(shù)。成本函數(shù)、收益函
2025-01-28 21:34
【摘要】變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過(guò)的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問(wèn)題
2024-08-06 11:18
【摘要】費(fèi)馬(fermat)引理第六節(jié)微分中值定理且在x0處可導(dǎo),若)(?或證則0?0?xyo0x設(shè)f(x)在點(diǎn)x0的某鄰域U(x0)內(nèi)有定義,有則例如,32)(2???xxxf).1)(3(???xx,]3,1[上連續(xù)在?,)3,1(上可
2024-08-06 11:20
【摘要】一、單項(xiàng)選擇題(1)函數(shù)??fx在0xx?處連續(xù)是??fx在0xx?處可微的()條件.(2)當(dāng)0x?時(shí),??21xe?是關(guān)于x的()(3)2x?是函數(shù)??
2025-01-17 22:17
【摘要】大學(xué)微積分總復(fù)習(xí)匯總初等函數(shù)一、基本初等函數(shù)1.冪函數(shù))(是常數(shù)???xyoxy2xy?xy?xy?11)1,1(xy1?2.指數(shù)函數(shù))1,0(???aaayxxey?xay?xay)1(?)1(?a)1,0(3.對(duì)數(shù)函數(shù))1,0(log???aaxyaxy
2024-08-20 22:47
【摘要】微積分初步復(fù)習(xí)試題一、填空題(每小題4分,本題共20分)?、焙瘮?shù)的定義域是 ?。踩?,則 2?。、城€在點(diǎn)處的切線方程是 .⒋ 0 .⒌微分方程的特解為.二、單項(xiàng)選擇題(每小題4分,本題共20分)⒈設(shè)函數(shù),則該函數(shù)是( A).A.偶函數(shù) B.奇函數(shù) C.非奇非偶函數(shù)D.既奇又偶函數(shù)
2025-06-27 13:43
【摘要】1嬡計(jì)艘脊鍬藤殃雖薜腈唱瀲鍘苧晝妾薟革肥堰鏡膳蕕微積分復(fù)習(xí)嘸篋娑虬岳冶砂崆粗蓯妥七昵鉻豁薇甲脖滁枘3提綱?考試相關(guān)?學(xué)習(xí)內(nèi)容串講?一些作業(yè)中的問(wèn)題?一些難點(diǎn)綬河概乖螂不嵫嘯痣癱莽憊瑯墳櫪屙林登寤賺米最猗戲巨凇盼幺跽癔椽樂(lè)智臚總亭渥剪4復(fù)習(xí)備考1-網(wǎng)絡(luò)輔助
2024-11-12 21:17
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問(wèn)題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2024-08-06 11:11
【摘要】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無(wú)窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2024-08-06 11:10
【摘要】一、問(wèn)題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2024-09-01 08:39
【摘要】主要內(nèi)容典型例題第五章不定積分習(xí)題課積分法原函數(shù)選擇u有效方法基本積分表第一換元法第二換元法直接積分法分部積分法不定積分幾種特殊類型函數(shù)的積分一、主要內(nèi)
2024-09-01 11:12
【摘要】曲率是描述曲線局部性質(zhì)(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉(zhuǎn)角越大.轉(zhuǎn)角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-05-06 04:19