【摘要】§一.行列式的定義1.二階行列式與三階行列式2.n階行列式二.行列式的性質(zhì)三.行列式按行(列)展開(kāi)定理及其推論四.方陣乘積的行列式五.克萊姆法則用消元法解二元線性方程組???????.,22221211212111bxaxabxaxa??1??2
2025-05-16 00:52
【摘要】2022/2/16第一章行列式1上課手機(jī)關(guān)了嗎?2022/2/16第一章行列式2復(fù)習(xí):行列式按某行(列)展開(kāi)定理及推論按第行展開(kāi)iD????1(1,2,,)nijijjaAin????按第列展開(kāi)j????1(1,2
2025-01-28 18:21
【摘要】第四節(jié)克萊姆法則n()det,,1,ijnnijijAAArsrsnaa????若階矩陣的元素在中的代數(shù)余子式為,則對(duì)任意引理有:1det()0
2025-08-02 00:42
【摘要】作業(yè):P221(1)7(1)第一周作業(yè)點(diǎn)評(píng)復(fù)習(xí)1、n階行列式的展開(kāi)定理2、行列式的計(jì)算方法(三類)1.定義定義2.性質(zhì)性質(zhì)3.展開(kāi)(降階)展開(kāi)(降階).解解::根據(jù)行列式性質(zhì)練習(xí)練習(xí)4計(jì)算行列式解解::行和相同練習(xí)練習(xí)5計(jì)算行列式解解
2024-08-20 10:46
【摘要】第三節(jié)克萊姆法則分布圖示★引例★齊次與非齊次線性方程組的概念★克萊姆法則★例1★例2★例3★例4★齊次線性方程組解的定理★例5★例6★內(nèi)容小結(jié)★課堂練習(xí)★習(xí)題7-3內(nèi)容要點(diǎn)n元線性方程組的概念從三元線性方程組
2024-08-19 17:26
【摘要】§1矩陣及其運(yùn)算一、矩陣的定義例1設(shè)某物質(zhì)有m個(gè)產(chǎn)地,n個(gè)銷地,如果以aij表示由第i個(gè)產(chǎn)地銷往第j個(gè)銷地的數(shù)量,則這類物質(zhì)的調(diào)運(yùn)方案,可用一個(gè)數(shù)表表示如下:1.實(shí)際例子銷量產(chǎn)地njaaaa111211??12…j……nmi??21
2024-09-13 14:17
【摘要】第2章MATLAB矩陣及其運(yùn)算變量和數(shù)據(jù)操作MATLAB矩陣MATLAB運(yùn)算矩陣分析矩陣的超越函數(shù)字符串結(jié)構(gòu)數(shù)據(jù)和單元數(shù)據(jù)稀疏矩陣變量和數(shù)據(jù)操作變量與賦值1.變量命名在MATLAB,變量名是以字母開(kāi)頭,后接字母、數(shù)字或下劃線
2025-03-01 08:21
【摘要】矩陣基本運(yùn)算及應(yīng)用201700060牛晨暉在數(shù)學(xué)中,矩陣是一個(gè)按照長(zhǎng)方陣列排列的復(fù)數(shù)或?qū)崝?shù)集合。矩陣是高等代數(shù)學(xué)中的常見(jiàn)工具,也常見(jiàn)于統(tǒng)計(jì)分析等應(yīng)用數(shù)學(xué)學(xué)科中。在物理學(xué)中,矩陣于電路學(xué)、力學(xué)、光學(xué)和量子物理中都有應(yīng)用;計(jì)算機(jī)科學(xué)中,三維動(dòng)畫(huà)制作也需要用到矩陣。矩陣的運(yùn)算是數(shù)值分析領(lǐng)域的重要問(wèn)題。將矩陣分解為簡(jiǎn)單矩陣的組合可以在理論和實(shí)際應(yīng)用上簡(jiǎn)化矩陣的運(yùn)算。在電力系統(tǒng)方面,矩陣知識(shí)
2025-04-18 04:48
【摘要】第二章矩陣及其運(yùn)算一、主要內(nèi)容1、矩陣的可逆性2、求逆矩陣3、矩陣的運(yùn)算.,)1(),2,1;,2,1(212222111211矩陣簡(jiǎn)稱列矩陣行叫做列的數(shù)表行排成個(gè)數(shù)由nmnmaaaaaaaaaAnmnjmianmmnmmnnij??????
2025-07-29 19:59
【摘要】第2章MATLAB矩陣及其運(yùn)算變量和數(shù)據(jù)操作MATLAB矩陣MATLAB運(yùn)算矩陣分析字符串變量和數(shù)據(jù)操作變量與賦值1.變量命名在MATLAB,變量名是以字母開(kāi)頭,后接字母、數(shù)字或下劃線的字符序列,最多63個(gè)字符。在MATLAB中,變量名區(qū)分字母的大小寫(xiě)
2024-10-28 00:18
【摘要】矩陣的定義及其運(yùn)算規(guī)則1、矩陣的定義一般而言,所謂矩陣就是由一組數(shù)的全體,在括號(hào)()內(nèi)排列成m行n列(橫的稱行,縱的稱列)的一個(gè)數(shù)表,并稱它為m×n陣。矩陣通常是用大寫(xiě)字母A、B…來(lái)表示。例如一個(gè)m行n列的矩陣可以簡(jiǎn)記為:,或。即:?????????
2024-08-20 10:36
【摘要】矩陣的定義及其運(yùn)算規(guī)則1、矩陣的定義一般而言,所謂矩陣就是由一組數(shù)的全體,在括號(hào)()內(nèi)排列成m行n列(橫的稱行,縱的稱列)的一個(gè)數(shù)表,并稱它為m×n陣。矩陣通常是用大寫(xiě)字母A、B…來(lái)表示。例如一個(gè)m行n列的矩陣可以簡(jiǎn)記為:,或。即:??????????&
2025-04-18 04:42
【摘要】《線性代數(shù)》下頁(yè)結(jié)束返回第二章矩陣§1矩陣的概念§2矩陣的線性運(yùn)算、乘法和轉(zhuǎn)置運(yùn)算下頁(yè)《線性代數(shù)》下頁(yè)結(jié)束返回第二章矩陣本章要求1.掌握矩陣的運(yùn)算,了解方陣的冪、方陣乘積的行列式;2.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)及
2025-05-27 00:58
【摘要】第三章矩陣的運(yùn)算?矩陣運(yùn)算?特殊矩陣?逆矩陣?分塊矩陣?初等矩陣?矩陣的秩111112121121212222221122nnnnmmmmmnmnababababababABababab???
2024-08-16 17:43
【摘要】EXCEL的矩陣運(yùn)算例:x=(ATA)-1ATb已知資料(結(jié)果)位置選擇『函數(shù)類別』及『函數(shù)名稱』(可利用『說(shuō)明』來(lái)查“MMULT”的詳細(xì)用法),輸入“TRANSPOSE(“因?yàn)锳T是一反矩陣,必須先用反矩陣功能轉(zhuǎn)換,以選擇矩陣範(fàn)圍(也可以直接輸入)。.A範(fàn)圍
2024-10-30 02:56