【摘要】2022/8/181第四章數(shù)值積分與數(shù)值微分2022/8/182?,3,2,1?k第四章數(shù)值積分與數(shù)值微分牛頓-柯特斯公式§復(fù)合求積法§龍貝格求積公式§高斯求積法§引言§2022/8/183
2024-08-16 13:33
【摘要】主要內(nèi)容典型例題第三章導(dǎo)數(shù)與微分習(xí)題課求導(dǎo)法則基本公式導(dǎo)數(shù)xyx????0lim微分dyyx???關(guān)系ddddd()yyyyxyyoxx??????????高階導(dǎo)數(shù)一、
2024-09-11 12:42
【摘要】微積分理論微分方程及其應(yīng)用微積分II微積分理論馮國臣2022/2/17例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時其中,2Cxy??即,1?C求得
2025-01-29 05:31
【摘要】考無憂論壇-----考霸整理版高等數(shù)學(xué)微分和積分?jǐn)?shù)學(xué)公式(集錦)(精心總結(jié))一、(系數(shù)不為0的情況)二、重要公式(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)三、下列常用等價無窮小關(guān)系()
2025-08-02 09:11
【摘要】實(shí)驗(yàn)八積分運(yùn)算電路實(shí)驗(yàn)1、實(shí)驗(yàn)?zāi)康摹袷煜腗ultisim軟件中調(diào)用集成運(yùn)算放大器。●調(diào)用信號發(fā)生器、示波器仿真測試?!裾莆哲浖c硬件電路的連接與調(diào)試。一、驗(yàn)證性實(shí)驗(yàn)2、實(shí)驗(yàn)步驟:(1)熟悉電路圖結(jié)構(gòu)(2)關(guān)閉電源按照電路原理圖連接好電路,并檢查是否有接錯點(diǎn),然后再打開電源。(調(diào)零)
2024-08-20 20:04
【摘要】數(shù)值分析A第4章數(shù)值逼近與數(shù)值積分清華大學(xué)數(shù)學(xué)科學(xué)系基本內(nèi)容梯形公式和高斯公式。;四種插值方法:牛頓插值,拉格朗日插值,分段線性插值,三次樣條插值。?????0x1xnx0y1y求解插值問題的基本思路構(gòu)造一個(相對簡單的)函數(shù)),(
2025-07-29 04:50
【摘要】這一部分里,我們將看到以下內(nèi)容?幾個典型物理問題及其數(shù)學(xué)描述(微分方程和定解條件)?微分方程的類型?微分方程的邊界條件?微分方程及其邊界條件的等效積分原理幾個典型的問題?弦振動問題的微分方程及定解條件?傳熱問題的微分方程及定解條件?位勢方程及定解條件弦是一種抽象模型,工程實(shí)際中,可以模擬繩鎖、
2025-05-27 04:17
【摘要】二階線性微分方程)()()(22xfyxQdxdyxPdxyd???時,當(dāng)0)(?xf二階線性齊次微分方程時,當(dāng)0)(?xf二階線性非齊次微分方程n階線性微分方程).()()()(1)1(1)(xfyxPyxPyxPynnnn?????????第六節(jié)線性微分方程解的結(jié)構(gòu)])[(11?
2025-01-28 08:36
【摘要】一、可分離變量的微分方程二、齊次方程四、變量代換法解方程第二節(jié)一階微分方程三、一階線性微分方程五、小結(jié)與思考題一、可分離變量的微分方程()d()dgyyfxx?可分離變量的微分方程.425d2dyxyx?例如425d2d,yyxx???解法設(shè)函數(shù))(
2024-09-11 12:46
【摘要】三、微分的應(yīng)用,,0)()(00很小時且處的導(dǎo)數(shù)在點(diǎn)若xxfxxfy????例1?,,10問面積增大了多少厘米半徑伸長了厘米的金屬圓片加熱后半徑解,2rA??設(shè).,10厘米厘米???rrrrdAA???????2????).(2厘米??.)(0xxf???00xxxxdyy?
2025-07-31 11:17
【摘要】第二節(jié)可分離變量的微分方程dxxfdyyg)()(?可分離變量的微分方程.5422yxdxdy?例如,2254dxxdyy???解法???dxxfdyyg)()(設(shè))(yG和)(xF分別為)(yg和)(xf的原函數(shù),則CxFyG??)()(為微分方程的通解.例1.求微分
2024-08-16 16:24
【摘要】第4章數(shù)值積分與數(shù)值微分1數(shù)值積分的基本概念實(shí)際問題當(dāng)中常常需要計(jì)算定積分。在微積分中,我們熟知,牛頓—萊布尼茲公式是計(jì)算定積分的一種有效工具,在理論和實(shí)際計(jì)算上有很大作用。對定積分,若在區(qū)間上連續(xù),且的原函數(shù)為,則可計(jì)算定積分似乎問題已經(jīng)解決,其實(shí)不然。如1)是由測量或數(shù)值計(jì)算給出數(shù)據(jù)表時,Newton-Leibnitz公式無法應(yīng)用。2)許多形式上很簡單的函數(shù),
2024-09-07 01:55
【摘要】全微分方程及積分因子內(nèi)容:湊微分法,全微分方程的判別式,全微分方程的公式解,積分因子的微分方程,只含一個變量的積分因子和其他特殊形式的積分因子。由于有數(shù)學(xué)分析多元微積分的基礎(chǔ),本節(jié)的定理1可以簡化處理。對課本中第三塊知識即全微分方程的物理背景可以留到后面處理,對第四塊知識增解和失解的情況要分散在本章各小節(jié),每次都要重視這個問題。關(guān)于初等積分法的局限性可歸到學(xué)習(xí)近似解法時一起講解。重點(diǎn):全
2025-07-01 19:10
【摘要】常微分方程的積分因子求解法內(nèi)容摘要:本文給出了幾類特殊形式的積分因子的求解方法,并推廣到較一般的形式。關(guān)鍵詞:全微分方程,積分因子。一、基本知識對于形如()的微分方程,如果方程的左端恰是,的一個可微函數(shù)的全微分,即=,則稱()為全微分方程.易知,上述全微分方程的通解為
2025-07-01 20:24
【摘要】第四章數(shù)值積分與微分《計(jì)算機(jī)數(shù)值方法》延安大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院第四章數(shù)值積分與微分《計(jì)算機(jī)數(shù)值方法》本章要點(diǎn):牛頓-柯特斯積分復(fù)合積分龍貝格積分高斯求積公式第四章數(shù)值積分與微分《計(jì)
2025-01-27 20:17