【摘要】一、三角函數(shù)圖象的作法y=sinx作圖步驟:(2)平移三角函數(shù)線;(3)用光滑的曲線連結(jié)各點(diǎn).(1)等分單位圓作出特殊角的三角函數(shù)線;xyoPMA?xyoy=sinx-11o1A2??23?2?y=Asin(?x+?)的
2024-11-24 15:19
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《三角函數(shù)的圖像和性質(zhì)》學(xué)習(xí)目標(biāo):(1)利用單位圓中的三角函數(shù)線作出sin,Ryxx??的圖象,明確圖象的形狀;cos,Ryxx??(2)根據(jù)關(guān)系,作出的圖象;(3)用“五點(diǎn)法”作出正弦函數(shù)、余弦函數(shù)的簡圖,并利用
2024-11-23 21:28
2024-11-22 00:49
【摘要】三角函數(shù)的圖象與性質(zhì)Ⅰ湖北羅田一中高新濤——定義域,值域,單調(diào)性函數(shù)圖象定義域,值域,單調(diào)性cosyx?tanyx?sinyx?2??xy2?032??32?xR?[1,1]y??[1,1]y??xR?[2,2]xkkkZ???????上單
2024-12-19 17:03
【摘要】----正弦、余弦、函數(shù)圖象三角函數(shù)圖象和性質(zhì)sin(2k+x)=(kZ)sinxxy01-1y=sinx(xR)一、正弦函數(shù)的“五點(diǎn)畫圖法”(0,0)、(,1)、(,0)、(,-1)、(2,0)
2024-11-24 17:43
【摘要】三角函數(shù)的圖象和性質(zhì)正弦函數(shù),余弦函數(shù)的圖象和性質(zhì)正弦,余弦函數(shù)的圖形正弦,余弦函數(shù)的性質(zhì)函數(shù)y=Asin(wx+y)的圖象正切函數(shù)的圖象和性質(zhì)一正弦函數(shù),余弦函數(shù)的圖象和性質(zhì)1圖象(1)利用正弦線畫正弦函數(shù)的圖象:在直角坐標(biāo)系x軸上任選一點(diǎn)o,
2024-11-21 23:33
【摘要】楚水實(shí)驗(yàn)學(xué)校高一數(shù)學(xué)備課組三角函數(shù)的圖象和性質(zhì)復(fù)習(xí)x6?yo-?-12?3?4?5?-2?-3?-4?1?x6?yo-?-12?3?4?5?-2?-3?-4?1?1.正弦曲線2.余弦曲線一.三角函數(shù)的圖象知識(shí)回顧:xy??
2024-12-04 02:49
【摘要】精品資源普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座23)—三角函數(shù)的圖象與性質(zhì)一.課標(biāo)要求:1.能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函數(shù)的周期性;2.借助圖像理解正弦函數(shù)、余弦函數(shù)在[0,2π],正切函數(shù)在(-π/2,π/2)上的性質(zhì)(如單調(diào)性、最大和最小值、圖像與x軸交點(diǎn)等);3.結(jié)合具體實(shí)例,了解y
2025-07-08 15:58
【摘要】??秼??????だ輿?A?引??傽Р?┾???儍?昰??????????????擸?????經(jīng)???渢???垙?憻?㏕づ??堻???筤銓??羸彮蜏?∈????毒焱??噴??絨??????縍欆竊?彧????岒??韰?霡鐏販?爛藝積絙?澤???卞?:??鈞媥室????鑇????灹輶?劭嚵?噥?嬱?????鉘??*鉰????????ò???詓蠁魂?胯?庈?
2025-07-08 17:00
【摘要】精品資源第01講三角函數(shù)性質(zhì)與圖象(一)知識(shí)歸納:1.角的概念:①解的定義:一條射線從起始位置OA繞端點(diǎn)O旋轉(zhuǎn)到終止位置OB,形成了一個(gè)角α,OA稱角的始邊,OB稱角的終邊,O稱頂點(diǎn),規(guī)定按逆時(shí)針方向旋轉(zhuǎn)形成的角為正角,按順時(shí)針方向旋轉(zhuǎn)形成的角為負(fù)角,若射線不作任何旋轉(zhuǎn)形成零角,{角}=R.②象限角:角的終邊(除端點(diǎn))落在第幾象限,則稱這個(gè)角為第幾象限角.
2025-07-08 16:18
【摘要】精品資源難點(diǎn)15三角函數(shù)的圖象和性質(zhì)三角函數(shù)的圖象和性質(zhì)是高考的熱點(diǎn),在復(fù)習(xí)時(shí)要充分運(yùn)用數(shù)形結(jié)合的思想,.●難點(diǎn)磁場(★★★★)已知α、β為銳角,且x(α+β-)>0,試證不等式f(x)=x<2對(duì)一切非零實(shí)數(shù)都成立.●案例探究[例1]設(shè)z1=m+(2-m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范圍.命題意圖:本題
2025-07-02 14:42
【摘要】三角函數(shù)的圖象制作主講:劉曉波高考中涉及到的方面主要是:1.用五點(diǎn)法畫出三角函數(shù)的圖象.2.已知y=Asin(ωx+φ)的圖象,確定函數(shù)的解析式.3.三角函數(shù)的圖形變換.4.三角函數(shù)圖象的對(duì)稱性.(掌握?qǐng)D象的對(duì)稱軸及對(duì)稱中心)返回結(jié)束下一頁例1:作函數(shù)
2024-11-21 00:49
【摘要】§、正弦、余弦函數(shù)圖象三角函數(shù)圖象與性質(zhì)復(fù)習(xí):三角函數(shù)線xyoPMT1A的終邊-1-11正弦函數(shù)y=sinx和余弦函數(shù)y=cosx圖象的畫法1、幾何法2、描點(diǎn)法1-10yx●●●一、正弦函數(shù)y=
2024-11-18 18:16
【摘要】第18講│三角函數(shù)的圖象和性質(zhì)第18講三角函數(shù)的圖象和性質(zhì)第18講│知識(shí)梳理知識(shí)梳理1.周期函數(shù)(1)周期函數(shù)的定義對(duì)于函數(shù)f(x),如果存在一個(gè)非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有______________,那么函數(shù)f(x)就叫做周期函數(shù),非零常數(shù)T叫做這個(gè)
【摘要】三角函數(shù)的圖象與性質(zhì) 一、知識(shí)網(wǎng)絡(luò) 三、知識(shí)要點(diǎn) ?。ㄒ唬┤呛瘮?shù)的性質(zhì) 1、定義域與值域 2、奇偶性 ?。?)基本函數(shù)的奇偶性 奇函數(shù):y=sinx,y=tanx; 偶函數(shù):y=cosx. ?。?)型三角函數(shù)的奇偶性 ?。á。ゞ(x)=(x∈R)g(x)為偶函數(shù) 由此得; 同理,為奇函數(shù) . ?。áⅲ?/span>
2025-07-03 20:23