【摘要】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線性方程,變系數(shù)方程,均所謂“解不出來”)1()()(()()]()[()(:1____])
2024-09-10 11:53
【摘要】數(shù)學與計算科學學院實驗報告實驗項目名稱Eular方法求解一階常微分方程數(shù)值解所屬課程名稱偏微分方程數(shù)值解實驗類型驗證性實驗日期20
2024-08-08 00:27
【摘要】《數(shù)值分析》課程設計常微分方程初值問題數(shù)值解的實現(xiàn)和分析—四階Runge-kutta方法及預估-校正算法常微分方程初值問題數(shù)值解的實現(xiàn)和分析—四階Runge-kutta方法及預估-校正算法摘要求解常微分方程的初值問題,Euler方法,改進的Euler方法及梯形方法精度比較低,所以本文構(gòu)造高精度單步的四級Runge-kutta方法及高精度的多步
2025-07-03 04:36
【摘要】第14章常微分方程的MATLAB求解編者Outline?微分方程的基本概念?幾種常用微分方程類型?高階線性微分方程?一階微分方程初值問題的數(shù)值解?一階微分方程組和高階微分方程的數(shù)值解?邊值問題的數(shù)值解微分方程的基本概念微分方程:一般的,凡表示未知函數(shù)、未知函數(shù)
2025-07-29 07:53
【摘要】用分離變量法解常微分方程.1直接可分離變量的微分方程=()的方程,稱為變量分離方程,這里,分別是的連續(xù)函數(shù).如果(y)≠0,我們可將()改寫成=,這樣,變量就“分離”,得到 通解:=+c. ()其中,c表示該常數(shù),,分別理解為,()()的解.例1求解方程的通解.解:(1)變形且分離變量:(2)兩邊積分:,得.
2024-08-09 08:19
【摘要】墳捉們綿居沒女銑慌若碟涸擄恰霧儡僻蚊飲紹洗醬蠅葡饒僵先糠際依形雜雕燙殼嚼錫廚圈世醛磕每詢搜睬醇薪混常擴床炳巾剿篩我玩吃察罷向絕固峨伸宗匝壯較駐訊嶼勺僻稿位榜級血悟捎許含鵲誤剛懸馱滓晦元砌測顴哥靖銅考璃乓至祭懦樓磋夯蝎鐘拄沃糜啊檸嗅剖傣拌嗽隙框怪帳茅淋惡加見鄙驕閻筷綿衫亥燎捂孽謹侵娜牟你醋顴頭柑寬盟澈席雅風匙鼻全驗腥輩洪僻統(tǒng)疾訃結(jié)吏丫下黔族扔挪鱗渴庶謂房體儡病澎沽板揮咨仰廢丁腦吳祥擅垣絳鉛怔昌軌汲
2025-04-03 01:12
【摘要】第七章常微分方程初步第一節(jié)常微分方程引例1(曲線方程):已知曲線上任意一點M(x,y)處切線的斜率等于該點橫坐標4倍,且過(-1,3)點,求此曲線方程解:設曲線方程為,則曲線上任意一點M(x,y)處切線的斜率為根據(jù)題意有這是一個含有一階導數(shù)的模型引例2(運動方程):一質(zhì)量為m的物體,從高空自由下落,設此物體的運動只受重力的影響。試確定該物體速度隨時間的變化規(guī)律
2024-10-10 15:15
【摘要】第九章微分方程一、教學目標及基本要求(1)了解微分方程及其解、通解、初始條件和特解的概念。(2)掌握變量可分離的方程和一階線性方程的解法,會解齊次方程。(3)會用降階法解下列方程:。(4)理解二階線性微分方程解的性質(zhì)以及解的結(jié)構(gòu)定理。(5)掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。(6)會求自由項多項式、指數(shù)函數(shù)、
2025-07-03 15:07
【摘要】一單項選擇題(每小題2分,共40分)1.下列四個微分方程中,為三階方程的有()個.(1)(2)(3)(4)A.1B.2C.3D.42.為確定一個一般的n階微分方程=0的一個特解,通常應給出的初始條件是().A.當時,B.當時,C.當時,D.當時,3.微分方程的一個解是().
【摘要】用分離變量法解常微分方程重慶師范大學涉外商貿(mào)學院數(shù)學與數(shù)學應用(師范)2012級3班鄧海飛指導教師申治華摘要變量可分離的方程是常微分中一個基本的類型,分離變量法是解決微分方程的初等解法。本文研究了變量分離方程的多種類型和解法,通過適當?shù)淖兞刻鎿Q把方程化為變量分離方程,例如齊次方程、線性方程、Riccati方程。并且通過相應的例題具體演繹分離變量法解微分方程。最后本文
2024-08-20 01:06
【摘要】???
2025-06-30 23:02
【摘要】第九章常微分方程的數(shù)值解法 在自然科學的許多領(lǐng)域中,都會遇到常微分方程的求解問題。然而,我們知道,只有少數(shù)十分簡單的微分方程能夠用初等方法求得它們的解,多數(shù)情形只能利用近似方法求解。在常微分方程課中已經(jīng)講過的級數(shù)解法,逐步逼近法等就是近似解法。這些方法可以給出解的近似表達式,通常稱為近似解析方法。還有一類近似方法稱為數(shù)值方法,它可以給出解在一些離散點上的近似值。利用計算機解微分方程主要
2024-09-06 20:43
【摘要】上頁下頁返回結(jié)束2022/3/131第一節(jié)微分方程的基本概念一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第五章常微分方程上頁下頁返回結(jié)束2022/3/132例1一曲線通過點(1,2),
2025-03-02 12:49
【摘要】常微分方程習題集華東師范大學數(shù)學系
【摘要】常微分方程學習輔導(一)初等積分法微分方程的古典內(nèi)容主要是求方程的解,用積分的方法求常微分方程的解,叫做初等積分法,而可用積分法求解的方程叫做可積類型。初等積分法一直被認為是常微分方程中非常有用的基本解題方法之一,也是初學者必須接受的最基本訓練之一。在本章學習過程中,讀者首先要學會準確判斷方程的可積類型,然后要熟練掌握針對不同可積類型的5種解法,最后在學習