freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)篇附答案解析-展示頁

2025-03-31 23:04本頁面
  

【正文】 ∠EAG,設(shè)∠DAG=∠EAG=α,根據(jù)∠FAE為∠BAE一半求出所求角度數(shù)即可.試題解析:(1)①當(dāng)點(diǎn)P在線段BC上時(shí),∵∠EAP=∠BAP=30176。求∠AFE的度數(shù);②若點(diǎn)E恰為線段DF的中點(diǎn)時(shí),請(qǐng)通過運(yùn)算說明點(diǎn)P會(huì)在線段BC的什么位置?并求出此時(shí)∠AFD的度數(shù).歸納:(2)若點(diǎn)P是線段BC上任意一點(diǎn)時(shí)(不與B,C重合),∠AFD的度數(shù)是否會(huì)發(fā)生變化?試證明你的結(jié)論;猜想:(3)如圖2,若點(diǎn)P在BC邊的延長線上時(shí),∠AFD的度數(shù)是否會(huì)發(fā)生變化?試在圖中畫出圖形,并直接寫出結(jié)論.【答案】(1)①45176。 ∵點(diǎn)P是CD中點(diǎn),在△CPF和△DPG中, ∴△CPF≌△DPG, ∴PF=PG=FG=2,延長BP交AC于E, ∵m∥n, ∴∠ECP=∠BDP, ∴CP=DP,在△CPE和△DPB中, ∴△CPE≌△DPB, ∴PE=PB,∵∠APB=90176。備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)篇附答案解析一、平行四邊形1.(問題情景)利用三角形的面積相等來求解的方法是一種常見的等積法,此方法是我們解決幾何問題的途徑之一.例如:張老師給小聰提出這樣一個(gè)問題:如圖1,在△ABC中,AB=3,AD=6,問△ABC的高AD與CE的比是多少?小聰?shù)挠?jì)算思路是:根據(jù)題意得:S△ABC=BC?AD=AB?CE.從而得2AD=CE,∴ 請(qǐng)運(yùn)用上述材料中所積累的經(jīng)驗(yàn)和方法解決下列問題:(1)(類比探究)如圖2,在?ABCD中,點(diǎn)E、F分別在AD,CD上,且AF=CE,并相交于點(diǎn)O,連接BE、BF,求證:BO平分角AOC.(2)(探究延伸)如圖3,已知直線m∥n,點(diǎn)A、C是直線m上兩點(diǎn),點(diǎn)B、D是直線n上兩點(diǎn),點(diǎn)P是線段CD中點(diǎn),且∠APB=90176。兩平行線m、n間的距離為4.求證:PA?PB=2AB.(3)(遷移應(yīng)用)如圖4,E為AB邊上一點(diǎn),ED⊥AD,CE⊥CB,垂足分別為D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分別為AE、BE的中點(diǎn),連接DM、CN.求△DEM與△CEN的周長之和.【答案】(1)見解析;(2)見解析;(3)5+【解析】分析:(1)、根據(jù)平行四邊形的性質(zhì)得出△ABF和△BCE的面積相等,過點(diǎn)B作OG⊥AF于G,OH⊥CE于H,從而得出AF=CE,然后證明△BOG和△BOH全等,從而得出∠BOG=∠BOH,即角平分線;(2)、過點(diǎn)P作PG⊥n于G,交m于F,根據(jù)平行線的性質(zhì)得出△CPF和△DPG全等,延長BP交AC于E,證明△CPE和△DPB全等,根據(jù)等積法得出AB=APPB,從而得出答案;(3)、延長AD,BC交于點(diǎn)G,過點(diǎn)A作AF⊥BC于F,設(shè)CF=x,根據(jù)Rt△ABF和Rt△ACF的勾股定理得出x的值,根據(jù)等積法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,從而得出兩個(gè)三角形的周長之和.同理:EM+EN=AB詳解:證明:(1)如圖2, ∵四邊形ABCD是平行四邊形,∴S△ABF=S?ABCD,S△BCE=S?ABCD, ∴S△ABF=S△BCE,過點(diǎn)B作OG⊥AF于G,OH⊥CE于H, ∴S△ABF=AFBG,S△BCE=CEBH,∴AFBG=CEBH,即:AFBG=CEBH, ∵AF=CE, ∴BG=BH,在Rt△BOG和Rt△BOH中, ∴Rt△BOG≌Rt△BOH, ∴∠BOG=∠BOH,∴OB平分∠AOC,(2)如圖3,過點(diǎn)P作PG⊥n于G,交m于F, ∵m∥n, ∴PF⊥AC,∴∠CFP=∠BGP=90176。 ∴AE=AB, ∴S△APE=S△APB, ∵S△APE=AEPF=AE=AB,S△APB=APPB,∴AB=APPB, 即:PA?PB=2AB;(3)如圖4,延長AD,BC交于點(diǎn)G, ∵∠BAD=∠B, ∴AG=BG,過點(diǎn)A作AF⊥BC于F,設(shè)CF=x(x>0), ∴BF=BC+CF=x+2, 在Rt△ABF中,AB=,根據(jù)勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2, 在Rt△ACF中,AC=,根據(jù)勾股定理得,AF2=AC2﹣CF2=26﹣x2,∴34﹣(x+2)2=26﹣x2, ∴x=﹣1(舍)或x=1, ∴AF==5,連接EG, ∵S△ABG=BGAF=S△AEG+S△BEG=AGDE+BGCE=BG(DE+CE),∴DE+CE=AF=5, 在Rt△ADE中,點(diǎn)M是AE的中點(diǎn), ∴AE=2DM=2EM,同理:BE=2CN=2EN, ∵AB=AE+BE, ∴2DM+2CN=AB, ∴DM+CN=AB,同理:EM+EN=AB ∴△DEM與△CEN的周長之和=DE+DM+EM+CE+CN+EN=(DE+CE)+[(DM+CN)+(EM+EN)]=(DE+CN)+AB=5+.點(diǎn)睛:本題主要考查的就是三角形全等的判定與性質(zhì)以及三角形的等積法,綜合性非常強(qiáng),難度較大.在解決這個(gè)問題的關(guān)鍵就是作出輔助線,然后根據(jù)勾股定理和三角形全等得出各個(gè)線段之間的關(guān)系.2.操作:如圖,邊長為2的正方形ABCD,點(diǎn)P在射線BC上,將△ABP沿AP向右翻折,得到△AEP,DE所在直線與AP所在直線交于點(diǎn)F.探究:(1)如圖1,當(dāng)點(diǎn)P在線段BC上時(shí),①若∠BAP=30176。;②BC的中點(diǎn),45176?!唷螪AE=90176。2=30176。∴∠ADE=∠AED=(180176。)247。在△AFD中,∠FAD=30176。=60176。∴∠AFE=180176。﹣75176。;②點(diǎn)E為DF的中點(diǎn)時(shí),P也為BC的中點(diǎn),理由如下:如圖1,連接BE交AF于點(diǎn)O,作EG∥AD,得EG∥BC,∵EG∥AD,DE=EF,∴EG=AD=1,∵AB=AE,∴點(diǎn)A在線段BE的垂直平分線上,同理可得點(diǎn)P在線段BE的垂直平分線上,∴AF垂直平分線段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P為BC的中點(diǎn),∴∠DAF=90176。+∠BAF,∴∠AFD=180176。;(2)∠AFD的度數(shù)不會(huì)發(fā)生變化,作AG⊥DF于點(diǎn)G,如圖1(a)所示,在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且∠1=∠BAP,∴∠1+∠2=90176。即∠FAG=45176。﹣45176。;(3)如圖2所示,∠AFE的大小不會(huì)發(fā)生變化,∠AFE=45176。+2α,∴∠FAE=∠BAE=45176。在Rt△AFG中,∠AFE=90176。=45176。.(1)求證:四邊形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度數(shù).【答案】(1)見解析;(2)18176。根據(jù)矩形的判定得出即可;(2)求出∠FDC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠DCO,根據(jù)矩形的性質(zhì)得出OD=OC,求出∠CDO,即可求出答案.【詳
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1