freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)-易錯(cuò)-難題篇含答案(1)-展示頁

2025-03-31 22:30本頁面
  

【正文】 ∴m2=32+(5m)2,∴m=,∴BH=,∴H(,3).(3)如圖③中,當(dāng)點(diǎn)D在線段BK上時(shí),△DEK的面積最小,最小值=?DE?DK=3(5)=,當(dāng)點(diǎn)D在BA的延長線上時(shí),△D′E′K的面積最大,最大面積=D′E′KD′=3(5+)=.綜上所述,≤S≤.【點(diǎn)睛】本題考查四邊形綜合題、矩形的性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)、旋轉(zhuǎn)變換等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題.2.如圖,在平行四邊形ABCD中,AD⊥DB,垂足為點(diǎn)D,將平行四邊形ABCD折疊,使點(diǎn)B落在點(diǎn)D的位置,點(diǎn)C落在點(diǎn)G的位置,折痕為EF,EF交對(duì)角線BD于點(diǎn)P.(1)連結(jié)CG,請(qǐng)判斷四邊形DBCG的形狀,并說明理由;(2)若AE=BD,求∠EDF的度數(shù).【答案】(1)四邊形BCGD是矩形,理由詳見解析;(2)∠EDF=120176。∵點(diǎn)D在線段BE上,∴∠ADB=90176。備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu) 易錯(cuò) 難題篇含答案(1)一、平行四邊形1.在平面直角坐標(biāo)系中,四邊形AOBC是矩形,點(diǎn)O(0,0),點(diǎn)A(5,0),點(diǎn)B(0,3).以點(diǎn)A為中心,順時(shí)針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點(diǎn)O,B,C的對(duì)應(yīng)點(diǎn)分別為D,E,F(xiàn).(1)如圖①,當(dāng)點(diǎn)D落在BC邊上時(shí),求點(diǎn)D的坐標(biāo);(2)如圖②,當(dāng)點(diǎn)D落在線段BE上時(shí),AD與BC交于點(diǎn)H.①求證△ADB≌△AOB;②求點(diǎn)H的坐標(biāo).(3)記K為矩形AOBC對(duì)角線的交點(diǎn),S為△KDE的面積,求S的取值范圍(直接寫出結(jié)果即可).【答案】(1)D(1,3);(2)①詳見解析;②H(,3);(3)≤S≤.【解析】【分析】(1)如圖①,在Rt△ACD中求出CD即可解決問題;(2)①根據(jù)HL證明即可;②,設(shè)AH=BH=m,則HC=BCBH=5m,在Rt△AHC中,根據(jù)AH2=HC2+AC2,構(gòu)建方程求出m即可解決問題;(3)如圖③中,當(dāng)點(diǎn)D在線段BK上時(shí),△DEK的面積最小,當(dāng)點(diǎn)D在BA的延長線上時(shí),△D′E′K的面積最大,求出面積的最小值以及最大值即可解決問題;【詳解】(1)如圖①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四邊形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90176。∵矩形ADEF是由矩形AOBC旋轉(zhuǎn)得到,∴AD=AO=5,在Rt△ADC中,CD==4,∴BD=BCCD=1,∴D(1,3).(2)①如圖②中,由四邊形ADEF是矩形,得到∠ADE=90176。由(1)可知,AD=AO,又AB=AB,∠AOB=90176。.【解析】【分析】(1)根據(jù)平行四邊形的性質(zhì)和折疊性質(zhì)以及矩形的判定解答即可;(2)根據(jù)折疊的性質(zhì)以及直角三角形的性質(zhì)和等邊三角形的判定與性質(zhì)解答即可.【詳解】解:(1)四邊形BCGD是矩形,理由如下,∵四邊形ABCD是平行四邊形,∴BC∥AD,即BC∥DG,由折疊可知,BC=DG,∴四邊形BCGD是平行四邊形,∵AD⊥BD,∴∠CBD=90176?!逜B∥DC,∴∠DBC=∠DBE=60176。.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),折疊性質(zhì),等邊三角形的性質(zhì)和判定,主要考查學(xué)生運(yùn)用定理進(jìn)行推理和計(jì)算的能力,題目綜合性比較強(qiáng),有一定的難度3.如圖,在平面直角坐標(biāo)系中,直線DE交x軸于點(diǎn)E(30,0),交y軸于點(diǎn)D(0,40),直線AB:y=x+5交x軸于點(diǎn)A,交y軸于點(diǎn)B,交直線DE于點(diǎn)P,過點(diǎn)E作EF⊥x軸交直線AB于點(diǎn)F,以EF為一邊向右作正方形EFGH.(1)求邊EF的長;(2)將正方形EFGH沿射線FB的方向以每秒個(gè)單位的速度勻速平移,得到正方形E1F1G1H1,在平移過程中邊F1G1始終與y軸垂直,設(shè)平移的時(shí)間為t秒(t>0).①當(dāng)點(diǎn)F1移動(dòng)到點(diǎn)B時(shí),求t的值;②當(dāng)G1,H1兩點(diǎn)中有一點(diǎn)移動(dòng)到直線DE上時(shí),請(qǐng)直接寫出此時(shí)正方形E1F1G1H1與△APE重疊部分的面積.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根據(jù)已知點(diǎn)E(30,0),點(diǎn)D(0,40),求出直線DE的直線解析式y(tǒng)=x+40,可求出P點(diǎn)坐標(biāo),進(jìn)而求出F點(diǎn)坐標(biāo)即可;(2)①易求B(0,5),當(dāng)點(diǎn)F1移動(dòng)到點(diǎn)B時(shí),t=10247。的距離是t,F(xiàn)垂直x軸方向移動(dòng)的距離是t,當(dāng)點(diǎn)H運(yùn)動(dòng)到直線DE上時(shí),在Rt△F39。=15F39。中,t=4,S=(12+)11=;當(dāng)點(diǎn)G運(yùn)動(dòng)到直線DE上時(shí),在Rt△F39。K=3t9,在Rt△PKG39。的距離是t,在Rt△F39。N=3t,∵M(jìn)H39。=15﹣F39。中,∴,∴t=4,∴EM=3,MH39。的距離是t,∵PF=3,∴PF39。PK中,∴PK=t﹣3,F(xiàn)39。中,==,∴t=7,∴S=15(15﹣7)=120.【點(diǎn)睛】本題考查一次函數(shù)圖象及性質(zhì),正方形的性質(zhì);掌握待定系數(shù)法求函數(shù)解析式,利用三角形的正切值求邊的關(guān)系,利用勾股定理在直角三角形中建立邊之間的聯(lián)系,準(zhǔn)確確定陰影部分的面積是解題的關(guān)鍵.4.如圖1,在△ABC中,AB=AC,AD⊥BC于D,分別延長AC至E,BC至F,且CE=EF,延長FE交AD的延長線于G.(1)求證:AE=EG;(2)如圖2,分別連接BG,BE,若BG=BF,求證:BE=EG;(3)如圖3,取GF的中點(diǎn)M,若AB=5,求EM的長.【答案】(1)證明見解析(2)證明見解析(3)【解析】【分析】(1)根據(jù)平行線的性質(zhì)和等腰三角形的三線合一的性質(zhì)得:∠CAD=∠G,可得AE=EG;(2)作輔助線,證明△BEF≌△GEC(SAS),可得結(jié)論;(3)如圖3,作輔助線,構(gòu)建平行線,證明四邊形DMEN是平行四邊形,得EM=DN=AC,計(jì)算可得結(jié)論.【詳解】證明:(1)如圖1,過E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如圖2,連接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分線,∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180176。﹣2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,在△BEF和△GCE中,∴△BEF≌△GEC(SAS),∴BE=EG;(3)如圖3,連接DM,取AC的中點(diǎn)N,連接DN,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N為AC的中點(diǎn),∴DN=AC=AN,∠DAN=∠ADN,∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中點(diǎn),∴DM=FG=GM,∠GDM=∠AGE,∴∠GDM=∠DAN,∴DM∥AE,∴四邊形DMEN是平行四邊形,∴EM=DN=AC,∵AC=AB=5,∴EM=.【點(diǎn)睛】本題是三角形的綜合題,主要考查
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1