freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx備戰(zhàn)中考數(shù)學-平行四邊形-培優(yōu)易錯試卷練習(含答案)附詳細答案-展示頁

2025-03-30 22:25本頁面
  

【正文】 DPG中, ∴△CPF≌△DPG, ∴PF=PG=FG=2,延長BP交AC于E, ∵m∥n, ∴∠ECP=∠BDP, ∴CP=DP,在△CPE和△DPB中, ∴△CPE≌△DPB, ∴PE=PB,∵∠APB=90176。20202021備戰(zhàn)中考數(shù)學 平行四邊形 培優(yōu)易錯試卷練習(含答案)附詳細答案一、平行四邊形1.(問題情景)利用三角形的面積相等來求解的方法是一種常見的等積法,此方法是我們解決幾何問題的途徑之一.例如:張老師給小聰提出這樣一個問題:如圖1,在△ABC中,AB=3,AD=6,問△ABC的高AD與CE的比是多少?小聰?shù)挠嬎闼悸肥牵焊鶕?jù)題意得:S△ABC=BC?AD=AB?CE.從而得2AD=CE,∴ 請運用上述材料中所積累的經(jīng)驗和方法解決下列問題:(1)(類比探究)如圖2,在?ABCD中,點E、F分別在AD,CD上,且AF=CE,并相交于點O,連接BE、BF,求證:BO平分角AOC.(2)(探究延伸)如圖3,已知直線m∥n,點A、C是直線m上兩點,點B、D是直線n上兩點,點P是線段CD中點,且∠APB=90176。兩平行線m、n間的距離為4.求證:PA?PB=2AB.(3)(遷移應用)如圖4,E為AB邊上一點,ED⊥AD,CE⊥CB,垂足分別為D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分別為AE、BE的中點,連接DM、CN.求△DEM與△CEN的周長之和.【答案】(1)見解析;(2)見解析;(3)5+【解析】分析:(1)、根據(jù)平行四邊形的性質得出△ABF和△BCE的面積相等,過點B作OG⊥AF于G,OH⊥CE于H,從而得出AF=CE,然后證明△BOG和△BOH全等,從而得出∠BOG=∠BOH,即角平分線;(2)、過點P作PG⊥n于G,交m于F,根據(jù)平行線的性質得出△CPF和△DPG全等,延長BP交AC于E,證明△CPE和△DPB全等,根據(jù)等積法得出AB=APPB,從而得出答案;(3)、延長AD,BC交于點G,過點A作AF⊥BC于F,設CF=x,根據(jù)Rt△ABF和Rt△ACF的勾股定理得出x的值,根據(jù)等積法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,從而得出兩個三角形的周長之和.同理:EM+EN=AB詳解:證明:(1)如圖2, ∵四邊形ABCD是平行四邊形,∴S△ABF=S?ABCD,S△BCE=S?ABCD, ∴S△ABF=S△BCE,過點B作OG⊥AF于G,OH⊥CE于H, ∴S△ABF=AFBG,S△BCE=CEBH,∴AFBG=CEBH,即:AFBG=CEBH, ∵AF=CE, ∴BG=BH,在Rt△BOG和Rt△BOH中, ∴Rt△BOG≌Rt△BOH, ∴∠BOG=∠BOH,∴OB平分∠AOC,(2)如圖3,過點P作PG⊥n于G,交m于F, ∵m∥n, ∴PF⊥AC,∴∠CFP=∠BGP=90176。 ∴AE=AB, ∴S△APE=S△APB, ∵S△APE=AEPF=AE=AB,S△APB=APPB,∴AB=APPB, 即:PA?PB=2AB;(3)如圖4,延長AD,BC交于點G, ∵∠BAD=∠B, ∴AG=BG,過點A作AF⊥BC于F,設CF=x(x>0), ∴BF=BC+CF=x+2, 在Rt△ABF中,AB=,根據(jù)勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2, 在Rt△ACF中,AC=,根據(jù)勾股定理得,AF2=AC2﹣CF2=26﹣x2,∴34﹣(x+2)2=26﹣x2, ∴x=﹣1(舍)或x=1, ∴AF==5,連接EG, ∵S△ABG=BGAF=S△AEG+S△BEG=AGDE+BGCE=BG(DE+CE),∴DE+CE=AF=5, 在Rt△ADE中,點M是AE的中點, ∴AE=2DM=2EM,同理:BE=2CN=2EN, ∵AB=AE+BE, ∴2DM+2CN=AB, ∴DM+CN=AB,同理:EM+EN=AB ∴△DEM與△CEN的周長之和=DE+DM+EM+CE+CN+EN=(DE+CE)+[(DM+CN)+(EM+EN)]=(DE+CN)+AB=5+.點睛:本題主要考查的就是三角形全等的判定與性質以及三角形的等積法,綜合性非常強,難度較大.在解決這個問題的關鍵就是作出輔助線,然后根據(jù)勾股定理和三角形全等得出各個線段之間的關系.2.(1)、動手操作:如圖①:將矩形紙片ABCD折疊,使點D與點B重合,點C落在點處,折痕為EF,若∠ABE=20176。;(2)同意;(3)60176。根據(jù)折疊重合的角相等,得∠BEF=∠DEF=55176。再根據(jù)折疊的性質得到∠EFC′=∠EFC=125176。求出即可.試題解析:(1)、∵在直角三角形ABE中,∠ABE=20176?!唷螧ED=110176。.∵AD∥BC,∴∠EFC=125176。.;(2)、同意,如圖,設AD與EF交于點G由折疊知,AD平分∠BAC,所以∠BAD=∠CAD.由折疊知,∠AGE=∠DGE=90176。所以∠AEF=∠AFE.所以AE=AF,即△AEF為等腰三角形.(3)、由題意得出:∠NMF=∠AMN=∠MNF,∴MF=NF,由折疊可知,MF=PF,∴NF=PF,而由題意得出:MP=MN,又∵MF=MF,∴△MNF≌△MPF,∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180176。∴∠MNF=60176。.【解析】試題分析:(1)①根據(jù)正方形的性質得DA=DC,∠ADB=∠CDB=45176。根據(jù)“SAS”證明△ABE≌△DCF,則∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90176。于是可判斷AG⊥BE;(2)如答圖1所示,過點O作OM⊥BE于點M,ON⊥AG于點N,證明△AON≌△BOM,可得四邊形OMHN為正方形,因此HO平分∠BHG結論成立;(3)如答圖2所示,與(1)同理,可以證明AG⊥BE;過點O作OM⊥BE于點M,ON⊥AG于點N,構造全等三角形△AON≌△BOM,從而證明OMHN為正方形,所以HO平分∠BHG,即∠BHO=45176。在△ADG和△CDG中,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG;②AG⊥BE.理由如下:∵四邊形ABCD為正方形,∴AB=DC,∠BAD=∠CDA=90176?!唷螦BE+∠BAG=90176?!郃G⊥BE;(2)由(1)可知AG⊥BE.如答圖1所示,過點O作OM⊥BE于點M,ON⊥AG于點N,則
點擊復制文檔內容
語文相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1