【摘要】集合的運算(全集、補集)-滬教版必修1教案 篇一:高中數學《子集、全集、補集》(1) 子集、全集、補集 教學目的:理解子集、真子集概念,會推斷和證明兩個集合包含關系,會推斷簡單集合的相等關系...
2025-03-30 05:38
【摘要】集合間的基本運算教學目標:1.理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集;2.理解在給定集合中一個子集的補集的含義,會求給定子集的補集;3.能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用;4.認識由具體到抽象的思維過程,并樹立相對的觀點。教學重點:交集與并集概念、補集的概念、數形結合的運用。
2024-12-01 04:55
【摘要】第一篇:混合運算教案[精選] 第五單元 第二課時 混合運算 教師:晁永琴 教學內容:教材第48頁中的例2及相關內容。教學目標: 1.借助解決問題的過程,讓學生明白“先乘除后加減”的道理。2...
2024-10-28 14:19
【摘要】預備知識集合論基礎概率論的嚴格理論是建筑在集合論與測度論基礎上的。工科院校的概率論課程雖然不涉及概率論的嚴格理論,但也離不開集合論與測度論的初步知識,為此我們在學習概率論之前有必要復習一下同學們在中學里學習過的集合論知識,并對集合代數與‘—代數作簡要介紹。一、集合的概念本書用大寫拉丁或希臘等字母表示集合(或簡稱集),用小寫字母表示集合中的元素,
2025-07-04 22:26
【摘要】一、集合的基本概念及表示方法某些指定的對象集在一起就成為一個集合,簡稱集,通常用大寫字母A,B,C,?表示.集合中的每個對象叫做這個集合的元素,通常用小寫字母a,b,c,?表示.集合按元素多少可分為:有限集(元素個數有限)、無限集(元素個數無限)、空集
2024-11-23 06:14
【摘要】重慶市萬州高級中學曾國榮2020年12月16日星期三重慶市萬州高級中學曾國榮§高2020級數學復習課件【考點指津】、子集、全集、交集、并集、補集等基本概念的內涵、包含、相等關系的意義,并會用它們正確表示一些簡單的集合重慶市萬州高級中學曾國榮§高
2024-11-21 09:37
【摘要】2024精選會議發(fā)言稿五篇集合 發(fā)言稿是演講里面很重要的準備的一項工作,如果你還在煩惱樣寫發(fā)言稿。那么今天小編為大家 精心收集整理的發(fā)言稿的范文,希望對大家有所幫助,如果你喜歡記得分享給身邊的朋友...
2024-09-15 23:32
【摘要】No。1課時序號2021學年第1學期第1。2課時工作課時2課時授課班級12機電預1
2024-12-11 04:27
【摘要】;鹿殼包裝設計公司鹿殼包裝設計公司;;粲唯高譚虛論絳蜀賊三遷國子博士昔鄧艾延昌中歸魏列教序于鄉(xiāng)黨例得一子解褐少在洛陽篤愛諸弟其以大啟茅賦秦二州刺史才干有美于父時人美之拜驍騎將軍鷲硤之口遺敕子叔偉延昌中司徒公兗無遠略之意務盡綏懷之略也有獻替之稱梁
2024-08-30 20:29
【摘要】第一篇:對數的運算性質教案 房山高級中學生態(tài)循環(huán)課堂教案高一數學 一、教學目標 1.理解并掌握對數性質及運算法則,能初步運用對數的性質和運算法則解題;2.通過法則的探究與推導,培養(yǎng)學生從特殊...
2024-10-22 05:30
【摘要】1.2集合之間的關系與運算1.2.2集合的運算第2課時補集學習目標學習導航實例――→了解全集、補集的概念――→理解補集的性質――→掌握補集的求法圖的應用重點難點重點:補集的求法.難點:補集思想在解題中的應用.新知初探思維啟動
2025-08-10 14:45
【摘要】20XX年簡潔的早安共勉句子短信集合63條[精選合集]第一篇:2020年簡潔的早安共勉句子短信集合63條2020年簡潔的早安共勉句子短信集合63條當我向你傾訴我的煩惱,那不是抱怨,那是我對你的信任。早安!以下是整理的早安共勉句子63條,歡迎參考。1、有人即使不言不語。依舊是你割舍不掉的好風景
2025-04-16 08:27
【摘要】安全自查報告集合20XX[精選5篇]第一篇:安全自查報告集合2020精選安全自查報告集合5篇安全自查報告篇1根據房管中心物業(yè)科對物業(yè)公司各項工作的指導精神,以及對服務等工作的具體要求。我們針對各項具體工作開展了全面細致的自查自糾工作,現(xiàn)將有關情況匯報如下:xxxx年即將進入二季度,在過去的時間里,物業(yè)管理有限
2025-04-09 08:10
【摘要】2024最炫酷婚禮致辭精選五篇集合 婚禮也是一個人一生中重要的里程碑,屬于生命禮儀的一種。那么今天小編為大家?guī)淼氖顷P于 婚禮的致辭范文,希望對大家有所幫助!如果你喜歡記得分享給身邊的朋友哦! ...
2024-09-16 04:46
【摘要】第1章集合和命題集合的運算一般地,由集合A和集合B的所有公共元素組成的集合,叫做A與B的交集.記作A∩B,讀作“A交B”.圖像語言:集合語言:A∩B={x|x?A且x?B}.例題例如:集合A={x|x是我校女生},B={
2024-12-03 05:42