【摘要】......總結(jié)拉格朗日中值定理的應(yīng)用 總結(jié)拉格朗日中值定理的應(yīng)用以羅爾定理、拉格朗日中值定理和柯西中值定理組成的一組中值定理是整個(gè)微分學(xué)的理論基礎(chǔ),尤其是拉格朗日中值
2025-07-01 02:40
【摘要】談?wù)劺窭嗜罩兄刀ɡ淼淖C明引言眾所周至拉格朗日中值定理是幾個(gè)中值定理中最重要的一個(gè),是微分學(xué)應(yīng)用的橋梁,在高等數(shù)學(xué)的一些理論推導(dǎo)中起著很重要的作用.研究拉格朗日中值定理的證明方法,力求正確地理解和掌握它,是十分必要的.拉格朗日中值定理證明的關(guān)鍵在于引入適當(dāng)?shù)妮o助函數(shù).實(shí)際上,能用來證明拉格朗日中值定理的輔助函數(shù)有無數(shù)個(gè),因此如果以引入輔助
2025-04-01 03:58
【摘要】教學(xué)設(shè)計(jì)第六章微分中值定理及其應(yīng)用§1拉格朗日定理和函數(shù)的單調(diào)性題目:羅爾定理與拉格朗日定理一、教學(xué)目的:1.知識目標(biāo):分別掌握羅爾定理和拉格朗日定理及對應(yīng)的幾何意義,掌握三個(gè)推論。2.能力目標(biāo):首先讓同學(xué)們知道微分中值定理包括四大定理(羅爾定理、拉格朗日定理、柯西定理、泰勒定理),然后通過學(xué)習(xí)羅爾定理,類比學(xué)習(xí)理解拉格朗日定理,培養(yǎng)學(xué)生
2025-04-23 00:14
【摘要】分類號編號本科生畢業(yè)論文(設(shè)計(jì))題目拉格朗日中值定理證明中的輔助函數(shù)的構(gòu)造及應(yīng)用作者姓名常正軍專業(yè)數(shù)學(xué)與應(yīng)用數(shù)學(xué)學(xué)號291010102研究類型
2025-06-30 22:59
【摘要】JIUJIANGUNIVERSITY畢業(yè)論文題目微分中值定理證明不等式方法研究英文題目Usingdifferentialmeanvaluetheoremprovinginequalitymethodstudying院系
2025-06-13 23:01
2025-01-18 04:52
【摘要】高二數(shù)學(xué)競賽班二試講義第一講琴生不等式、冪平均不等式一、知識要點(diǎn):1.琴生不等式凸函數(shù)的定義:設(shè)連續(xù)函數(shù)的定義域?yàn)?,對于區(qū)間內(nèi)任意兩點(diǎn),都有,則稱為上的下凸(凸)函數(shù);反之,若有,則稱為上的上凸(凹)函數(shù)。琴生(Jensen)不等式(1905年提出):若為上的下凸(凸)函數(shù),則(想象邊形的重心在圖象的上方,個(gè)點(diǎn)重合時(shí)“邊形”的重心在圖
2024-08-17 18:32
【摘要】第一篇:放縮法是不等式證明中一種常用的方法 放縮法是不等式證明中一種常用的方法,也是一種非常重要的方法。在證明過程中,適當(dāng)?shù)剡M(jìn)行放縮,可以化繁為簡、化難為易,達(dá)到事半功倍的效果。但放縮的范圍較難把握...
2024-10-29 04:54
【摘要】目錄摘要及關(guān)鍵詞........................................................11引言..............................................................12拉格朗日中值定理的介紹..................................
2025-06-09 23:05
【摘要】第一篇:利用導(dǎo)數(shù)證明不等式 利用導(dǎo)數(shù)證明不等式 例1.已知x0,求證:xln(1+x)分析:設(shè)f(x)=x-lnx。x?[0,+¥)。考慮到f(0)=0,要證不等式變?yōu)椋簒0時(shí),f(x)f...
2024-10-27 18:46
【摘要】第一篇:利用導(dǎo)數(shù)證明不等式的四種常用方法 利用導(dǎo)數(shù)證明不等式的四種常用方法 楊玉新 (紹興文理學(xué)院數(shù)學(xué)系,浙江紹興312000) 摘要:通過舉例闡述了用導(dǎo)數(shù)證明不等式的四種方法,:導(dǎo)數(shù);單調(diào)性...
2024-10-30 22:29
【摘要】利用導(dǎo)數(shù)證明不等式的兩種通法吉林省長春市東北師范大學(xué)附屬實(shí)驗(yàn)學(xué)校金鐘植岳海學(xué)利用導(dǎo)數(shù)證明不等式是高考中的一個(gè)熱點(diǎn)問題,利用導(dǎo)數(shù)證明不等式主要有兩種通法,即函數(shù)類不等式證明和常數(shù)類不等式證明。下面就有關(guān)的兩種通法用列舉的方式歸納和總結(jié)。一、函數(shù)類不等式證明函數(shù)類不等式證明的通法可概括為:證明不等式()的問題轉(zhuǎn)化為證明(),進(jìn)而構(gòu)造輔助函數(shù),然后利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性或
2025-06-26 04:22
【摘要】12.掌握利用導(dǎo)數(shù)解決實(shí)際生活中的優(yōu)化問題的方法和步驟,如用料最少、費(fèi)用最低、消耗最省、利潤最大、效率最高等..掌握導(dǎo)數(shù)與不等式、幾何等綜合問題的解題方法.????21(0)31
2024-10-06 08:09
【摘要】拉格朗日中值定理在高考題中的妙用一.拉格朗日中值定理[1]拉格朗日中值定理:若函數(shù)滿足如下條件:(i)在閉區(qū)間上連續(xù);(ii)在開區(qū)間內(nèi)可導(dǎo);則在內(nèi)至少存在一點(diǎn),使得.幾何意義:在滿足定理?xiàng)l件的曲線上至少存在一點(diǎn),該曲線在該點(diǎn)處的切線平行于曲線兩端的連線(如圖)二.求割線斜率大小-----------幾何意義的利用由拉格朗日中值幾何意義可知:曲線上兩點(diǎn)的
2025-04-23 01:29
【摘要】拉格朗日中值定理在高考題中的妙用【摘要】近幾年,,再通過一些具體的高考試題,體現(xiàn)高觀點(diǎn)解題的好處.【關(guān)鍵詞】拉格朗日中值定理高考題高觀點(diǎn)引言新課程中,高中數(shù)學(xué)新增加了許多近、現(xiàn)代數(shù)學(xué)思想,這為中學(xué)數(shù)學(xué)傳統(tǒng)的內(nèi)容注入了新的活力,也為解決一些初等數(shù)學(xué)問題的方法提供了更多的選擇.尤其在近幾年在近幾年的數(shù)學(xué)高考試題中,經(jīng)常遇到一些題目,雖