freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

功能梯度壓電懸臂梁的彎曲問(wèn)題畢業(yè)論文-文庫(kù)吧資料

2025-07-13 09:18本頁(yè)面
  

【正文】 peraturedependent properties. International Journal of Mechanical Sciences, 20xx, 49(4): 466478 [32]Shen HuiShen. Nonlinear thermal bending response of FGM plates due to heat conduction. Composites Part B: Engineering, 20xx, 38(2): 201215 [33]Shen HuiShen, Li ShiRong. Postbuckling of sandwish plates with FGM face sheets and temperaturedependent properties. Composites Part B: Engineering, 20xx, 39(2): 332344 [34]Woo J., Meguid S. A. Nonlinear analysis of functionally graded plates and shallow shells. International Journal of Solids and Structures, 20xx, 38 (4243): 74097421 [35]Woo J., Meguid S. A. Thermomechanical postbuckling analysis of moderately thick functionally graded plates and shallow shells. International Journal of Mechanical Sciences, 20xx, 47(8): 11471171 [36]Yang J., Kitipornchai S., Liew K. M. Large amplitude vibration of 畢業(yè)論文 第 28 頁(yè) 共 35 頁(yè) thermoelectromechanically stressed FGM laminated plates. Computer Methods in Applied Mechanics and Engineering, 20xx, 192(3536): 38613885 [37]Qian L. F., Batra R. C., Chen L. M. Static and dynamic deformations of thick functionally graded elastic plates by using higherorder shear and normal deformable plate theory and meshless local PetrovGalerkin method. Composites Part B: Engineering, 20xx, 35(68): 685697 [38]Loy C. T., Lam K. Y, Reddy J. N. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Sciences , 1999, 41 (3): 309324 [39]Ng T. Y., Lam K. Y., Liew K. M., et al. Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading. International Journal of Solids and Structures , 20xx, 38 (8): 12951309 [40]Wu X. H., Chen C. Q., Shen Y. P., et al. A high order theory for functionally graded piezoelectric shells. International Journal of Solids and Structures, 20xx, 39 (20): 53255344 [41]Shen H. S. Thermal postbuckling behavior of functionally graded cylindrical shells with temperaturedependent properties. International Journal of Solids and Structures, 20xx, 41 (7): 19611974 [42]Sofiyev A. H. Dynamic buckling of functionally graded cylindrical thin shells under nonperiodic impulsive loading. ACTA Mechanica, 20xx, 165 (34): 151163 [43]Shen H. S. Postbuckling analysis of axially, loaded functionally graded cylindrical panels in thermal environments. International Journal of Solids and Structures, 20xx, 39 (24): 59916010 [44]Yang J., Kitipornchai S., Liew K. M. Nonlinear analysis of the thermoelectro mechanical behaviour of shear deformable FGM plates with piezoelectric actuators. International Journal for Numerical Methods in Engineering, 20xx, 59 (12): 16051632 [45]Chen W. Q., Bian Z. G., Lv C. F., Ding H. J. 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with pressible fluid. International Journal of Solids and Structures, 20xx, 41(34): 947–964 [46]Sankar . An elasticity solution for functionally graded beams. Composites Science 畢業(yè)論文 第 29 頁(yè) 共 35 頁(yè) and Technology, 20xx, 61(5): 689696 [47]Sankar, ., Taeng J. T. Thermal stresses in functionally graded beams. AIAA Journal, 20xx, 40(6): 12281232 [48]Venkataraman S., Sankar B. V. Analysis of Sandwich Beams with Functionally Graded Core, AIAA, 20xx, 1: 752759 [49]Venkataraman S., Sankar B. V. Elasticity solution for stresses in a sandwich beam with functionally graded core . AIAA Journal , 20xx, 41(12): 25012505 [50]Zhu H., Sankar B. V. A bined Fourier seriesGalerkin method for the analysis of functionally graded beams. Journal of Applied Mechanics, ASME, 20xx, 71(3): 421424 [51]Shi Z. F. General solution of a density functionally gradient piezoelectric cantilever and its applications. Smart Material and Structures, 20xx, 11(1): 122129 [52]Shi Z. F., Chen Y. Functionally graded piezoelectric cantilever beam under load. Archive of Applied Mechanics, 20xx, 74(34): 237–247 畢業(yè)論文 第 30 頁(yè) 共 35 頁(yè) 附 錄 由邊界條件 (10),(11)及 (9)的第一式 ,求得 其中 由 邊界條件 (12)和 (13)得到 由邊界條件 (9),求得 畢業(yè)論文 第 31 頁(yè) 共 35 頁(yè) 其中 畢業(yè)論文 第 32 頁(yè) 共 35 頁(yè) 由邊界條件 (14),求得: 畢業(yè)論文 第 33 頁(yè) 共 35 頁(yè) 致 謝 本文在 陳 老師的多次指導(dǎo)下終于完稿,感激之情,溢于言表。 所采用的方法還可用于 求解其他邊界條件下的功能梯度壓電梁?jiǎn)栴}。假設(shè)所有電彈性材料常數(shù)沿厚度方向按同一函數(shù)規(guī)律變化,獲得了功能梯度壓電梁在上表面受均布?jí)毫?、自由端受集中力及集中力矩?lián)合作用問(wèn)題的力電 耦 合場(chǎng) 。上述這些特征在建立功能梯度壓電梁的簡(jiǎn)化理論時(shí)可以考慮 。對(duì)于功能梯度壓電梁( ), 厚度方向呈非線性變化,而位移 沿厚度方向保持為線性分布,但在 處,當(dāng) 時(shí), 位移 并不為零。 在 z=0 處的材料常數(shù)為 PZT4 材料的相應(yīng)數(shù)據(jù),如下表 表 1 PZT4 材料的物性參數(shù) 彈性模量 / 壓電常數(shù) / 介電常數(shù) / 135 300 525
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1