【摘要】(五)【學(xué)習(xí)目標(biāo)】解決直線與拋物線位置有關(guān)的簡(jiǎn)單問題,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想.【典型例題】例A(2,8),B(x1,y1),C(x2,y2)在拋物線22(0)ypxp??上,△ABC的重心與此拋物線的焦點(diǎn)F重合.(1)寫出該拋物線的方程和焦點(diǎn)F的坐標(biāo);(2)求線段BC
2024-11-27 23:25
【摘要】拋物線的簡(jiǎn)單幾何性質(zhì)【學(xué)習(xí)目標(biāo)】掌握拋物線的范圍、對(duì)稱性、頂點(diǎn)、離心率等幾何性質(zhì).【自主學(xué)習(xí)】根據(jù)拋物線的標(biāo)準(zhǔn)方程)0(22??ppxy,研究它的幾何性質(zhì):1.范圍2.對(duì)稱性3.頂點(diǎn)4.離心率拋物線上的點(diǎn)M與焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率,用e表示.由拋物線的定義可知,
2024-12-13 06:40
【摘要】§拋物線及其標(biāo)準(zhǔn)方程【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握拋物線的定義、標(biāo)準(zhǔn)方程、幾何圖形【重點(diǎn)】掌握拋物線的定義、標(biāo)準(zhǔn)方程【難點(diǎn)】掌握拋物線的定義、標(biāo)準(zhǔn)方程、幾何圖形一、自主學(xué)習(xí)函數(shù)2261yxx???
2024-12-06 00:10
【摘要】§拋物線的簡(jiǎn)單幾何性質(zhì)(2)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐。【學(xué)習(xí)目標(biāo)】1.掌握拋物線的幾何性質(zhì);2.拋物線與直線的關(guān)系.【重點(diǎn)】拋物線與直線的關(guān)系【難點(diǎn)】拋物線與直線的關(guān)系一、自主學(xué)習(xí)預(yù)習(xí)教材P70~P72,找出疑惑之處
2024-11-26 16:52
【摘要】§拋物線的簡(jiǎn)單幾何性質(zhì)(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.根據(jù)拋物線的方程研究曲線的幾何性質(zhì),并正確地畫出它的圖形;2.根據(jù)幾何條件求出曲線方程,并利用曲線的方程研究它的性質(zhì),畫圖【重點(diǎn)】根據(jù)拋物線的方程研究曲線的幾何性質(zhì),并正確地畫出它的圖形;
【摘要】1拋物線及其標(biāo)準(zhǔn)方程(一)2球在空中運(yùn)動(dòng)的軌跡是拋物線規(guī)律,那么拋物線它有怎樣的幾何特征呢?二次函數(shù)2(0)yaxbxca????又到底是一條怎樣的拋物線?拋物線及其標(biāo)準(zhǔn)方程(一)3復(fù)習(xí)回顧:我們知道,橢圓、雙曲線的有共同的幾何特征:都可
2024-11-25 12:02
【摘要】的簡(jiǎn)單幾何性質(zhì)(2)蓬萊一中于洪璽判斷直線與雙曲線位置關(guān)系的操作程序把直線方程代入雙曲線方程得到一元一次方程得到一元二次方程直線與雙曲線的漸進(jìn)線平行相交(一個(gè)交點(diǎn))計(jì)算判別式0=00相交相切相離復(fù)習(xí):一、直線與拋物線位置關(guān)系種類
2024-11-26 12:14
【摘要】命題【學(xué)習(xí)目標(biāo)】1.理解什么是命題,會(huì)判斷一個(gè)命題的真假.2.分清命題的條件和結(jié)論,能將命題寫成“若p,則q”的形式.【自主學(xué)習(xí)】研讀教材,回答下列問題::.從命題定義中可以看出,命題具備的兩個(gè)基本條件是:
【摘要】云南省曲靖市麒麟?yún)^(qū)第七中學(xué)高中數(shù)學(xué)空間直線與直線的位置關(guān)系學(xué)案新人教A版必修2【學(xué)習(xí)目標(biāo)】熟練掌握直線異面的定義理解掌握空間兩直線的位置關(guān)系熟練掌握平行公理4,并會(huì)簡(jiǎn)單應(yīng)用【學(xué)習(xí)重點(diǎn)】學(xué)習(xí)重點(diǎn):理解掌握空間兩直線的位置關(guān)系學(xué)習(xí)難點(diǎn):掌握直線異面的定義【問題呈現(xiàn)】如果在黑板上任意畫兩條直線,它們
2024-12-13 06:43
【摘要】10xy-110xy-11-221【學(xué)習(xí)目標(biāo)】,領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念及其關(guān)系新疆學(xué)案王新敞、函數(shù)與方程、化歸與轉(zhuǎn)化等數(shù)學(xué)思想,以及坐標(biāo)法、待定系數(shù)法等常用的數(shù)學(xué)方法新疆學(xué)案王新敞【自主學(xué)習(xí)】請(qǐng)回答如下問題:在直角坐標(biāo)系中、三象限的角平分線的方程為:
【摘要】課題拋物線的簡(jiǎn)單性質(zhì)(一)學(xué)習(xí)目標(biāo),理解焦點(diǎn)弦的概念,理解拋物線性質(zhì)與標(biāo)準(zhǔn)方程的關(guān)系.,進(jìn)一步理解用代數(shù)方法研究幾何性質(zhì)的優(yōu)越性,感受坐標(biāo)法和數(shù)形結(jié)合的基本思想.,類比拋物線的性質(zhì);由拋物線的方程研究性質(zhì),鞏固數(shù)形結(jié)合思想.學(xué)習(xí)重點(diǎn):拋物線的性質(zhì),理解拋物線性質(zhì)與標(biāo)準(zhǔn)方程的關(guān)系.學(xué)習(xí)難點(diǎn):
2024-11-26 18:59
【摘要】課題拋物線及其標(biāo)準(zhǔn)方程(一)第一課時(shí)學(xué)習(xí)目標(biāo):、準(zhǔn)線的概念..,利用方程研究拋物線,進(jìn)一步運(yùn)用坐標(biāo)法,提高“數(shù)學(xué)應(yīng)用”意識(shí).學(xué)習(xí)重點(diǎn):.會(huì)求簡(jiǎn)單的拋物線的方程.學(xué)習(xí)難點(diǎn):標(biāo)準(zhǔn)方程的推導(dǎo)學(xué)習(xí)方法:以講學(xué)稿為依托的探究式教學(xué)方法。學(xué)習(xí)過程一、課前預(yù)習(xí)指導(dǎo):1.橢圓的定義
【摘要】充要條件【學(xué)習(xí)目標(biāo)】理解充要條件的定義.【自主學(xué)習(xí)】研讀教材,回答下列問題:三、已知p:整數(shù)a是6的倍數(shù),q:整數(shù)a是2和3的倍數(shù).那么p是q的什么條件?q是p的什么條件?(1)上述問題中,p?q,故p是q的條件,q是p的條件;另一方面,q?
2024-12-13 06:41
【摘要】【學(xué)習(xí)目標(biāo)】理解軌跡的定義,并能根據(jù)所給的條件,選擇恰當(dāng)?shù)闹苯亲鴺?biāo)系求曲線的軌跡方程,畫出方程所表示的曲線新疆學(xué)案王新敞【自主學(xué)習(xí)】我們已經(jīng)建立了曲線的方程、方程的曲線的概念。利用此概念就可以借助于坐標(biāo)系,用坐標(biāo)表示點(diǎn),把曲線看成滿足某種條件的點(diǎn)的集合或軌跡,用曲線上點(diǎn)的坐標(biāo)(,)xy所滿足的方程(,)0fxy?表示曲線,
【摘要】判斷直線與雙曲線位置關(guān)系的操作程序把直線方程代入雙曲線方程得到一元一次方程得到一元二次方程直線與雙曲線的漸進(jìn)線平行相交(一個(gè)交點(diǎn))計(jì)算判別式0=00相交相切相離復(fù)習(xí):練習(xí):判斷下列直線與雙曲線的位置關(guān)系相交(一個(gè)交點(diǎn))11625:,1
2024-11-26 11:25