【摘要】公開課?復數(shù)乘除法的幾何意義的應用問題2:將問題1中向量OA平移,使O移至Q(1,1),A移至P(2,3),再繞Q點逆時針方向旋轉(zhuǎn)π/6得向量QB,求點B對應的復數(shù)。XYAPQOB問題3:設復數(shù)Z0、Z1對應于復平面上的點為A、B,C為復平面上的一點,∠CAB=θ,求C對
2024-08-29 01:04
【摘要】J金川公司一中金玉銀復數(shù)幾何意義的應用?|z+c|+|z-c|=2a??RcRa???,?乘法的幾何意義將向量逆時針方向旋轉(zhuǎn)θ(θ>0),并且模變?yōu)樵瓉淼腶倍得向量,則對應的復數(shù)與對應的復數(shù)的關(guān)系是_
2024-08-17 16:29
【摘要】J金川公司一中金玉銀復數(shù)幾何意義的應用?|z+c|+|z-c|=2a?乘法的幾何意義將向量逆時針方向旋轉(zhuǎn)θ(θ>0),并且模變?yōu)樵瓉淼腶倍得向量,則對應的復數(shù)與對應的復數(shù)的關(guān)系是_______?已知:集
2024-11-14 23:15
【摘要】數(shù)系的擴充和復數(shù)的概念復數(shù)的幾何意義i的基本特征是什么?(1)i2=-1;(2)i可以與實數(shù)進行四則運算,且原有的加、乘運算律仍然成立.復習鞏固虛數(shù)單位i的引入解決了負數(shù)不能開平方的矛盾,并將實數(shù)集擴充到了復數(shù)集。?復數(shù)相等的充要條件是什么?a+bi(a,b∈R
2024-08-18 05:02
【摘要】復數(shù)z=a+bi直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸實軸y軸虛軸(數(shù))(形)復數(shù)平面(簡稱復平面)一一對應z=a+bi復數(shù)的幾何意義(一)復數(shù)z=a+bi直角坐標系中的點
2024-08-05 06:04
【摘要】復數(shù)的幾何意義在幾何上,我們用什么來表示實數(shù)?想一想?實數(shù)的幾何意義類比實數(shù)的表示,在幾何上可以用什么來表示復數(shù)?實數(shù)可以用數(shù)軸上的點來表示。實數(shù)數(shù)軸上的點(形)(數(shù))一一對應回憶…復數(shù)的一般形式?Z=a+bi(a,b∈R)實
2024-08-28 22:03
【摘要】復數(shù)的幾何意義實數(shù)的幾何意義?新課導入在幾何上,我們用什么來表示實數(shù)?實數(shù)可以用數(shù)軸上的點來表示.數(shù)軸上的點實數(shù)(數(shù))一一對應(形)Z=a+bi(a,b∈R)實部虛部一個復數(shù)由什么確定?你能否找到用來表示
2024-08-08 05:14
【摘要】復數(shù)的幾何意義⑴一、問題引入:我們知道實數(shù)可以用數(shù)軸上的點來表示。x01一一對應注:規(guī)定了正方向,原點,單位長度的直線叫做數(shù)軸.實數(shù)數(shù)軸上的點(形)(數(shù))實數(shù)的幾何模型:類比實數(shù)的表示,可以用什么來表示復數(shù)?想一想?回憶…復數(shù)的一般形式?
2024-11-25 11:00
【摘要】復數(shù)的幾何意義⑵一、復習回顧:復平面復數(shù)z=a+bi有序?qū)崝?shù)對(a,b)直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復數(shù)平面
2024-11-25 18:06
【摘要】§復習檢測5分鐘之內(nèi)完成下列兩題:(1)(2+i)(4+3i);(2)化復數(shù)為代數(shù)形式和三解形式.1111222212(cossin)(cossin),?zrizrizz?????????設,則通過計算你發(fā)現(xiàn)了什么問
2024-08-07 14:18
【摘要】Z=a+bi(a,b∈R)實部!虛部!復數(shù)的代數(shù)形式:一個復數(shù)由有序?qū)崝?shù)對(a,b)確定實數(shù)可以用數(shù)軸上的點來表示。實數(shù)數(shù)軸上的點一一對應(數(shù))(形)類比實數(shù)的表示,可以用直角坐標系中的點的點來表示復數(shù)一.復平面復數(shù)z=a+bi直角坐標系中的點Z(a
2024-11-20 17:13
【摘要】幾何意義及應用教學目標A層:理解復數(shù)的運算與復數(shù)模的關(guān)系,能夠應用復數(shù)的幾何意義,模仿例題解決一些簡單的復數(shù)幾何問題.B層:在A層的基礎(chǔ)上,通過滲透轉(zhuǎn)化數(shù)形結(jié)合的思想和方法,能夠解決例題變式題,甚至可以自己構(gòu)造新的題型.培養(yǎng)探索和創(chuàng)新能力.
2024-08-07 15:18
2024-08-29 00:51
2024-08-29 00:37