【摘要】一不等式的解法1含絕對(duì)值不等式的解法(關(guān)鍵是去掉絕對(duì)值)利用絕對(duì)值的定義:(零點(diǎn)分段法)利用絕對(duì)值的幾何意義:表示到原點(diǎn)的距離公式法:,與型的不等式的解法.2整式不等式的解法根軸法(零點(diǎn)分段法)1)化簡(jiǎn)(將不等式化為不等號(hào)右邊為0,左邊的最高次項(xiàng)系數(shù)為正);2)分解因式;3)標(biāo)根(令每個(gè)因式為0,求出
2025-07-02 16:40
【摘要】不等式的解法1.一元二次不等式的解法(1)含有未知數(shù)的最高次數(shù)是二次的一元不等式叫做一元二次不等式.(2)一元二次不等式的解法(如下表所示)設(shè)a>0,x1,x2是一元二次方程ax2+bx+c=0的兩實(shí)根,且x1<x2(3)對(duì)于一元二次不等式的解法需注意:①≥0(a<b)的解集為:{x|x≤a或x>b};≤0(a<b)的解集為:{x|a≤x<b}.②
2025-04-22 23:40
【摘要】不等式的解法舉例(2)——高次不等式與分式不等式的解法.教學(xué)目的:掌握簡(jiǎn)單高次不等式與分式不等式的解法.教學(xué)重點(diǎn):把四類分式不等式轉(zhuǎn)化為整式不等式來(lái)解,用轉(zhuǎn)化法、列表法與標(biāo)根法求解分式、高次不等式:整理→標(biāo)根→畫線→選解教學(xué)難點(diǎn):1.分式不等式轉(zhuǎn)化為整式不等式來(lái)解,進(jìn)而化歸到一元一次、一元二次不等式來(lái)解. 2.帶
2025-06-29 23:35
【摘要】一、問(wèn)題嘗試:1、解不等式(x-1)(x-2)0解集為{x︱x2或x0呢?先轉(zhuǎn)化為(x-1)(x-2)0解集同(1).點(diǎn)評(píng):對(duì)于一元二次不等式
2024-10-25 11:52
【摘要】不等式解法舉例(1)含絕對(duì)值的一元一次、一元二次不等式(組)的解法基本絕對(duì)值不等式的解集?不等式︱x︱0)的解集是{x︱-aa(a0)的解集是{x︱xa或x-a}.?嘗試:(1)︱x︱1
2024-10-23 03:43
2024-08-28 20:29
【摘要】河南省泌陽(yáng)縣職業(yè)教育中心周祥松指數(shù)不等式的解法是利用指數(shù)函數(shù)的性質(zhì)化為同解的代數(shù)不等式);()();()(10);()();()(1)()()()()()()()(xgxfaaxgxfaa時(shí),axgxfaaxgxfaa時(shí),axgxfxgxfxgxf
2024-08-28 22:11
2025-05-17 00:31
【摘要】不等式的解法????類型mdcxbax)2(a)x(fa)x(f)1(??????或形如定理bababa?????baba)iv(baba)iii(baba)ii(baba)i(,Rb,a)1(1????????????
2025-07-24 00:19
【摘要】第7講不等式的解法主講人:馮老師(一)一元一次不等式的解法加法法則:ab?a+cb+c乘法法則:ab,且c0?acbcab,且c0?acbc復(fù)習(xí):觀察下列式子(1)x=4;
2025-07-31 23:54
【摘要】無(wú)理不等式的解法基本概念1、無(wú)理不等式:2、無(wú)理不等式的類型:根號(hào)下含有未知數(shù)的不等式。0)()()4()()()3()()()2()()()1(?????xgxfxgxfxgxfxgxf根式不等式的解法-例1解不等式0343????xx解:原不等式可化為
2024-11-09 22:31
【摘要】指數(shù)不等式、對(duì)數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對(duì)數(shù)不等式的重要依據(jù)。例5-
2025-07-01 01:24
【摘要】分式不等式數(shù)學(xué)科組權(quán)莘童【教學(xué)課題】分式不等式【授課時(shí)數(shù)】一課時(shí)【教學(xué)設(shè)想】《數(shù)學(xué)》作為高中的一門基礎(chǔ)課,是為了專業(yè)技能學(xué)習(xí)和升學(xué)服務(wù),,在教學(xué)中,要保證“寬”,而不追求“深”、“厚”.要本著“以學(xué)生發(fā)展為本”的教學(xué)理念,注重學(xué)生的主動(dòng)參與性,通過(guò)討論探究,、,創(chuàng)設(shè)情境,,和學(xué)生一起討論、探究分式不等式的解法,:(1)化為不等式組;(2),由于學(xué)生的基礎(chǔ)薄弱
【摘要】分式不等式的解法一.學(xué)習(xí)目標(biāo):1.會(huì)解簡(jiǎn)單的分式不等式。二.學(xué)習(xí)過(guò)程(一)基礎(chǔ)自測(cè)1.解下列不等式(1)(2)-x2+7x6(3).(二)嘗試學(xué)習(xí)(1)(2)0.(3)≥0(4
2025-03-30 12:19
【摘要】不等式的解法(一)一、基礎(chǔ)知識(shí)1、一元一次不等式的解法ax>b或ax<b2、絕對(duì)值不等式|x|>a(a>0)x<-a或x>a|x|<a(a>0)-a<x<a
2024-11-14 21:52