【摘要】專題測(cè)試三角函數(shù)與平面向量三角函數(shù)與平面向量在高考中的題量大致是三大一小,總分值約為26分左右,是高考中的重要得分點(diǎn),從近幾年的高考試題來(lái)看,三角函數(shù)與平面向量的小題一般都是中檔偏易題,大題絕大部分是容易題,并作為第一道解答題,因此一定要重視三角函數(shù)和平面向量的復(fù)習(xí).三角函數(shù)小題的熱點(diǎn)有三:一是利用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系及特殊角的三角函數(shù)值求值問(wèn)題,為容易題;二是利
2024-08-17 09:21
【摘要】寒假課程·高一數(shù)學(xué)第十講平面向量及其應(yīng)用例1:△ABC中,點(diǎn)D在邊AB上,CD平分∠=a,=b,|a|=1,|b|=2,則=( ),在直角梯形ABCD中,,動(dòng)點(diǎn)在內(nèi)運(yùn)動(dòng),(含邊界),設(shè),則的取值范圍是.
2025-04-23 01:00
【摘要】2022屆高考數(shù)學(xué)專題復(fù)習(xí)課件:第4專題三角函數(shù)與平面向量(理)《熱點(diǎn)重點(diǎn)難點(diǎn)專題透析》?一、三角函數(shù)重點(diǎn)知識(shí)回顧主要題型剖析高考命題趨勢(shì)專題訓(xùn)練回歸課本與創(chuàng)新設(shè)計(jì)試題備選(1)商數(shù)關(guān)系:tanα=?;(2)平方關(guān)系:sin2α+cos2α=1.(1)公式變用:1+c
2025-05-05 05:58
【摘要】三角函數(shù)與平面向量1.已知函數(shù).(1)若,求的單調(diào)遞增區(qū)間;(2)若時(shí),的最大值為4,求的值,并指出這時(shí)的值.2.已知函數(shù)(I)求函數(shù)的最小正周期;(II)求函數(shù)的單調(diào)增區(qū)間。3.已知向量,.(Ⅰ)當(dāng)⊥時(shí),求|+|的值;
2025-05-22 04:15
【摘要】專題3三角函數(shù)與平面向量知識(shí)網(wǎng)絡(luò)構(gòu)建三角函數(shù)作為基本初等函數(shù),它是周期函數(shù)模型的典范,這部分內(nèi)容概念、公式較多,知識(shí)點(diǎn)瑣碎繁雜,需要強(qiáng)化記憶,要把握三角函數(shù)圖象的幾何特征,靈活應(yīng)用其性質(zhì).平面向量具有幾何與代數(shù)形式的雙重性,是知識(shí)網(wǎng)絡(luò)的重要交匯點(diǎn),它與三角函數(shù)、解析幾何、平面幾何等都有一定的聯(lián)系,要給予
2024-07-31 00:28
【摘要】第6講三角函數(shù)的圖象與恒等變換第7講正弦、余弦定理與解三角形專題二三角函數(shù)、平面向量第8講平面向量及其應(yīng)用專題二三角函數(shù)、平面向量知識(shí)網(wǎng)絡(luò)構(gòu)建專題二│知識(shí)網(wǎng)絡(luò)構(gòu)建考情分析預(yù)測(cè)專題二│考情分析預(yù)測(cè)
2024-08-17 10:10
【摘要】數(shù)學(xué)必修4三角函數(shù)與平面向量第一章三角函數(shù)任意角1**學(xué)習(xí)目標(biāo)**1.認(rèn)識(shí)角擴(kuò)充的必要性,了解任意角的概念;2.會(huì)用集合和數(shù)學(xué)符號(hào)表示終邊相同的角,象限角以及區(qū)間角;3.會(huì)用運(yùn)動(dòng)的觀點(diǎn)認(rèn)識(shí)任意角的概念以及終邊相同的角、象限角和區(qū)間角的集合表示.**要點(diǎn)精講**1.角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所成的圖形.我們規(guī)定,按逆時(shí)針旋
2025-06-13 19:47
【摘要】三角函數(shù)與平面向量專題三????110)20(ABABAB?向量的概念及表示向量的概念:既有大小又有方向的量.注意向量和數(shù)量的區(qū)別.向量常用有向線段來(lái)表示,注意不能說(shuō)向量就是有向線段.零向量和
2024-11-20 01:26
【摘要】1.,,,,.2.【解】(1)由最低點(diǎn)為得A=2.由x軸上相鄰的兩個(gè)交點(diǎn)之間的距離為得=,即,由點(diǎn)在圖像上的故又(2)當(dāng)=,即時(shí),取得最大值2;當(dāng)即時(shí),取得最小值-1,故的值域?yàn)閇-1,2]3.4【解】(Ⅰ)f(x)===2sin(-)因?yàn)椤(x)為偶函數(shù),所以 對(duì)x∈R,f(-x)=f(x)恒成立,因此 s
2024-08-17 15:03
【摘要】弧度制1、已知為第三象限的角,則一定是正數(shù)一定是負(fù)數(shù)正數(shù)、負(fù)數(shù)都有可能有可能是零2、終邊與坐標(biāo)軸重合的角的集合是;;3、寫出-720°到720°之間與-1068°終邊相同的角的集合_________________4、三角形三內(nèi)角的
2024-08-06 07:13
【摘要】主頁(yè)三角函數(shù)與平面向量的綜合應(yīng)用主頁(yè)例1已知函數(shù)f(x)=23sinxcosx+2cos2x-1(x∈R).(1)求函數(shù)f(x)的最小正周期及在區(qū)間??????0,π2上的最大值和最小值;(2)若f(x0)=6
2025-05-21 11:28
【摘要】三角函數(shù)與平面向量(一)三角函數(shù):三角函數(shù)有16個(gè)考點(diǎn)(1).(2)掌握任意角的正弦,余弦,正切的定義,了解余切,正割,余割的定義,了解周期函數(shù)與最小正周期的意義.(3)掌握同角三角函數(shù)的基本關(guān)系式,掌握正弦、余弦的誘導(dǎo)公式,掌握兩角和與差的正弦、余弦
2024-08-17 13:03
【摘要】第二講(文) 三角函數(shù)與平面向量第一節(jié)三角函數(shù)的化簡(jiǎn)、求值及證明三角函數(shù)的化簡(jiǎn)、求值及證明涉及恒等變換,而三角函數(shù)的恒等變換是歷年高考命題的熱點(diǎn).它既可以出現(xiàn)小題(選擇或者填空),也可以與三角函數(shù)的性質(zhì),解三角形,向量等知識(shí)結(jié)合,參雜、滲透在解答題中
2024-08-17 08:43
2024-08-18 18:39
【摘要】最后沖刺——平面向量與三角函數(shù)1.平面向量例1(1)已知,是平面內(nèi)兩個(gè)互相垂直的單位向量,若向量滿足,則的最大值是(2)如圖,在△ABC中,設(shè),,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)為P,若,則,AOBP例1(3)(3)如圖,在中,點(diǎn)P是線段OB及線段AB延長(zhǎng)線所圍成的陰影區(qū)域(含邊界)的任意
2024-08-30 04:35