【摘要】y=f(x)在R上是奇函數(shù),而且在(0,+∞)上是增函數(shù),證明y=f(x)在(-∞,0)上也是增函數(shù).變式:已知函數(shù)y=f(x)是偶函數(shù),而且在(0,+∞)上是減函數(shù),那么y=f(x)在(-∞,0)上是增函數(shù)還是減函數(shù)?f(x)為偶函數(shù),g(x)為奇函數(shù),且
2024-11-29 00:52
【摘要】函數(shù)的奇偶性高三備課組1.定義:設(shè)y=f(x),x∈A,如果對于任意x∈A,都有,則稱y=f(x)為偶函數(shù)。設(shè)y=f(x),x∈A,如果對于任意x∈A,都有,則稱y=f(x)為奇函數(shù)。如
2024-11-19 02:54
【摘要】奇偶性觀察下面三張圖片,它們有什么共同特征?觀察函數(shù)f(x)=x2和f(x)=|x|圖象并思考:(1)這兩個函數(shù)圖象有什么共同特征?(2)填函數(shù)值對應(yīng)表,它們是如何體現(xiàn)這些特征的?x-3-2-10123f(x)=x2x-3-2-10123f(x)=|x|9410
2024-11-29 02:07
【摘要】你能舉出生活中具有對稱性的物體嗎?觀察的圖象,從對稱的角度你發(fā)現(xiàn)了什么?)0(1,2????xxyxyxyoxyo0x))(,(00xfx0x?))(,(00xfx??))(,(00xfx))(,(00
2024-08-28 20:31
【摘要】第三節(jié)函數(shù)的奇偶性考綱點擊,了解函數(shù)奇偶性的含義的性質(zhì)..熱點提示要性質(zhì),仍是2020年高考考查的重點,常與函數(shù)的單調(diào)性、周期性等知識交匯命題.,三種題型都有可能出現(xiàn),多以選擇題、填空題的形式出現(xiàn),屬中、低檔題.奇偶性定義圖象特點偶函數(shù)如果對于函數(shù)f(x)的定義域內(nèi)任
2024-11-18 00:29
【摘要】引入課題:f(x)=x2,求f(0),f(-1),f(1),f(-2),f(2),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(0)=0,f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(x)=x3,求f(0),f(-1),f(1)f(-2),f
2024-11-17 05:07
【摘要】百度搜索李蕭蕭文檔百度搜索李蕭蕭文檔難點8奇偶性與單調(diào)性(二)函數(shù)的單調(diào)性、奇偶性是高考的重點和熱點內(nèi)容之一,特別是兩性質(zhì)的應(yīng)用更加突出.本節(jié)主要幫助考生學(xué)會怎樣利用兩性質(zhì)解題,掌握基本方法,形成應(yīng)用意識.●難點磁場(★★★★★)已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x
2024-08-31 13:54
2024-11-29 04:15
【摘要】函數(shù)的奇偶性一、引入觀察下列圖片,你有何感受??觀察下列函數(shù)的圖象,從對稱的角度,你發(fā)現(xiàn)它們有什么共同特征??(1)y=x2;(2)y=x二、問題情境:yo?觀察下列函數(shù)的圖象,從對稱的角度,你發(fā)現(xiàn)它們有什么共同的特征??(1)y=x;
2024-11-29 00:18
【摘要】澤國中學(xué)數(shù)學(xué)組觀察下列圖片,你有何感受?一、引入xy0觀察下圖,思考并討論以下問題:(1)這兩個函數(shù)圖象有什么共同特征嗎?(2)相應(yīng)的自變量與函數(shù)值是如何體現(xiàn)這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)
2024-11-14 17:17
【摘要】數(shù)的奇偶性北師大版五年級數(shù)學(xué)上冊小船最初在南岸,從南岸駛向北岸,再從北岸駛回南岸,不斷往返。小船擺渡11次后,船在南岸還是北岸?為什么?我來列表擺渡次數(shù)船所在的位置1北岸2南岸3北岸4
2024-12-02 11:20
【摘要】函數(shù)的基本性質(zhì)——奇偶性1.在初中學(xué)習(xí)的軸對稱圖形和中心對稱圖形的定義是什么?復(fù)習(xí)回顧2.請分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象.1.在初中學(xué)習(xí)的軸對稱圖形和中心對稱圖形的定義是什么?復(fù)習(xí)回顧1.奇函數(shù)、偶函數(shù)的定義講授新課1.奇函數(shù)、偶函數(shù)的定義奇函數(shù):
2024-12-15 16:39
【摘要】奇偶性第1課時函數(shù)奇偶性的概念故宮殿堂建筑整齊對稱,相映成趣,給人以穩(wěn)重、博大、端莊的感覺!數(shù)學(xué)上有對稱的函數(shù)圖象嗎?它們體現(xiàn)了函數(shù)的什么性質(zhì)?一起讓我們來學(xué)習(xí)這個性質(zhì)吧!.(難點).(重點、難點)、偶函數(shù)的圖象的對稱性.已知函數(shù)f(x)=x2,求f(0),f(-1),f(1),f(-2),f(2)
2025-03-28 06:45
【摘要】?本節(jié)重點:函數(shù)基本知識小結(jié).?本節(jié)難點:函數(shù)性質(zhì)的應(yīng)用.1.一次函數(shù)f(x)=kx+b(k≠0),當(dāng)k0時為增函數(shù),k0時為減函數(shù),在閉區(qū)間[m,n]上的兩端點取得最值;二次函數(shù)f(x)=ax2+bx+c(a≠0).a(chǎn)&g
2024-11-17 09:22
【摘要】制作人:吳智祥老師引入課題:f(x)=x2,求f(0),f(-1),f(1),f(-2),f(2),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(0)=0,f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(x)=x3,求f(0),f
2024-11-18 01:05