【摘要】圓的標(biāo)準(zhǔn)方程求曲線方程的一般步驟1:建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)(x,y)表示曲線上任意一點(diǎn)M的坐標(biāo);(建立坐標(biāo)系,設(shè)點(diǎn))2:寫出適合條件P的點(diǎn)M的集合P={M|P(M)}3:用坐標(biāo)表示P(M),列出方程f(x,y)=0;(列式)4:化方程f(x,y)=0為最簡形式;(化簡)5:證明化簡后的方程的解為坐標(biāo)的點(diǎn)都
2024-11-14 23:20
【摘要】平面內(nèi)與定點(diǎn)距離等于定長的點(diǎn)的集合(軌跡)P={M||MC|=r}一、知識(shí)回顧C(jī)圓的方程xyOC圓心(a,b),半徑r圓的定義集合表示MrCa二、知識(shí)學(xué)習(xí)(1)方程中參數(shù)a、b、r的意義是什么?(2)當(dāng)圓心在原點(diǎn)時(shí)圓的方程的形式是什么?
2024-11-14 16:45
【摘要】問題提出,兩點(diǎn)確定一條直線,一點(diǎn)和傾斜角也確定一條直線,那么在什么條件下可以確定一個(gè)圓呢?,圓也可以用一個(gè)方程來表示,怎樣建立圓的方程是我們需要探究的問題.圓心和半徑知識(shí)探究一:圓的標(biāo)準(zhǔn)方程平面上到一個(gè)定點(diǎn)的距離等于定長的點(diǎn)的軌跡叫做圓.思考1:圓可以看成是平面上的一條曲線,在平面幾何中,圓是怎樣定義
2025-08-10 08:28
【摘要】第四章圓與方程圓的標(biāo)準(zhǔn)方程問題提出,兩點(diǎn)確定一條直線,一點(diǎn)和傾斜角也確定一條直線,那么在什么條件下可以確定一個(gè)圓呢?,圓也可以用一個(gè)方程來表示,怎樣建立圓的方程是我們需要探究的問題.圓心和半徑知識(shí)探究一:圓的標(biāo)準(zhǔn)方程平面上到一個(gè)定點(diǎn)的距離等于定長的點(diǎn)的軌跡叫做圓.
2024-12-02 12:37
【摘要】§圓的標(biāo)準(zhǔn)方程一.圓的標(biāo)準(zhǔn)方程平面內(nèi)到一個(gè)定點(diǎn)的距離等于定長的軌跡是圓,定點(diǎn)是圓心,定長是圓的半徑。求以C(a,b)為圓心,r為半徑的圓的方程.設(shè)M(x,y)是⊙C上任意一點(diǎn),點(diǎn)C在⊙C上的條件是|CM|=r.也就是說,如果點(diǎn)M在⊙C上,則|CM|=r,反之如
2025-08-10 13:25
【摘要】圓的切線方程yoxM(x0,y0)x·x0+y·y0=r2回顧已知學(xué)習(xí)新知知識(shí)鞏固練習(xí)已知圓過點(diǎn)A(2,-3)和B(-2,-5),若圓心在直線x-2y–3=0上,試求圓的方程。解法1:設(shè)所求圓的方程為:(x-a)2+(y-b)2=r2則
2025-07-31 15:23
【摘要】《》問題:(1)求到點(diǎn)C(1,2)距離為2的點(diǎn)的軌跡方程.(x?1)2+(y?2)2=4(2)方程(x?1)2+(y?2)2=4表示的曲線是什么?以點(diǎn)C(1,2)為圓心,2為半徑的圓.:平面內(nèi)與定點(diǎn)的距離等于定長的點(diǎn)的集合
2024-11-29 01:19
【摘要】修改后:圓的標(biāo)準(zhǔn)方程三維目標(biāo):知識(shí)與技能:1、掌握?qǐng)A的標(biāo)準(zhǔn)方程,能根據(jù)圓心、半徑寫出圓的標(biāo)準(zhǔn)方程。2、會(huì)用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程。過程與方法:進(jìn)一步培養(yǎng)學(xué)生能用解析法研究幾何問題的能力,滲透數(shù)形結(jié)合思想,通過圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的學(xué)習(xí),注意培養(yǎng)學(xué)生觀察問題、發(fā)現(xiàn)問題和解決問題的能力。情感態(tài)度與價(jià)值觀:通過運(yùn)用圓的知識(shí)解決實(shí)際
2024-12-01 13:49
【摘要】《圓的標(biāo)準(zhǔn)方程》教學(xué)設(shè)計(jì)一、教材分析學(xué)習(xí)了“曲線與方程”之后,作為一般曲線典型例子,安排了本節(jié)的“圓的方程”。圓是學(xué)生比較熟悉的曲線,在初中曾經(jīng)學(xué)習(xí)過圓的有關(guān)知識(shí),本節(jié)內(nèi)容是在初中所學(xué)知識(shí)及前幾節(jié)內(nèi)容的基礎(chǔ)上,進(jìn)一步運(yùn)用解析法研究它的方程,它與其他圖形的位置關(guān)系及其應(yīng)用同時(shí),由于圓也是特殊的圓錐曲線,因此,學(xué)習(xí)了圓的方程,就為后面學(xué)習(xí)其它圓錐曲線的方程奠定了基礎(chǔ)也就是說,本節(jié)內(nèi)容
2025-04-23 00:19
2024-11-29 06:17
【摘要】授課人——高密二中李紹尊課題:圓的標(biāo)準(zhǔn)方程OXY1)建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)M(x,y)是曲線上任意一點(diǎn);2)用坐標(biāo)表示點(diǎn)M所適合的條件,列出方程f(x,y)=0;3)化方程f(x,y)=0為最簡形式4)查缺補(bǔ)漏。問題:怎樣給出一個(gè)
2024-11-26 12:20
【摘要】高密市優(yōu)質(zhì)課評(píng)選課件制作人:高密一中張新敏授課人:高密一中張新敏圓的方程1、圓的標(biāo)準(zhǔn)方程求曲線方程的一般步驟:(1)建系、設(shè)點(diǎn)(2)寫出滿足條件的點(diǎn)的集合(3)條件坐標(biāo)化,列出方程
【摘要】圓方程及直線與圓的位置關(guān)系復(fù)習(xí)柯橋中學(xué)高二備課組一、基本概念1、圓的標(biāo)準(zhǔn)方程以(a,b)為圓心,r為半徑的圓的標(biāo)準(zhǔn)方程為:(x-a)2+(y-b)2=r22、圓的一般方程:x2+y2+Dx+Ey+F=0此方程中D、E、F在什么條件下表示為圓、點(diǎn)圓、虛圓?如何求此圓的圓心和
2024-11-14 19:12
【摘要】課題:圓的標(biāo)準(zhǔn)方程教學(xué)目標(biāo):(1)回顧與分析確定圓的幾何要素,在直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程。(2)培養(yǎng)運(yùn)用坐標(biāo)法研究幾何的能力,熟練運(yùn)用待定系數(shù)法求圓的方程。(3)通過實(shí)際問題的學(xué)習(xí),知道理論來源于實(shí)際,又服務(wù)于實(shí)際的道理。(4)知道圓上的點(diǎn)與圓方程的解的關(guān)系,體會(huì)圓的“完美無缺”。教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的推導(dǎo)與運(yùn)
2024-12-01 15:38
【摘要】1《圓的標(biāo)準(zhǔn)方程》教學(xué)設(shè)計(jì)(教師用)成都市洛帶中學(xué)柳青教材分析本節(jié)內(nèi)容位于曲線的方程和方程之后,是求具體曲線的方程。同時(shí),本節(jié)課的研究方法為以后學(xué)習(xí)橢圓、雙曲線、拋物線提供了一個(gè)基本模式,因此,可以把圓看作是圓錐曲線的前奏曲。學(xué)情分析圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)
2025-03-12 04:19