【摘要】全等三角形1已知:如圖,四邊形ABCD中,AC平分DBAD,CE^AB于E,且DB+DD=180°,求證:AE=AD+BE2如圖17所示,在∠AOB的兩邊上截取AO=BO,OC=OD,連接AD、BC交于點P,連接OP,則下列結(jié)論正確的是()①△APC
2025-03-30 07:41
【摘要】2016專題:《全等三角形證明》1.已知:D是AB中點,∠ACB=90°,求證:DABC2.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點,求證:∠1=∠2ABCDEF213.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE4.如圖,四邊形ABCD中
【摘要】精品資源相似三角形題目集錦1.操作如圖,在正方形ABCD中,P是CD上一動點(與C、D不重合).使得三角形的直角頂點與P點重合,并且一條直角邊始終經(jīng)過點B,另一直角邊與正方形的某一邊所在直線交于點E.探究(1)觀察操作猜想哪一個三角形也△.(2)當(dāng)點P位于CD的中點時,你得到的三角形與△BPC的周長比是多少?
2024-08-17 03:40
【摘要】官方網(wǎng)站:相似三角形及其性質(zhì)一、課堂講解知識點1、三角對應(yīng)相等,三邊對應(yīng)成比例的三角形叫相似三角形。如△ABC與△A/B/C/相似,記作:△ABC∽△A/B/C/。相似三角形的比叫相似比相似三角形的定義既是相似三角形的性質(zhì),也是三角形相似的判定方法。注意
2025-04-23 07:51
【摘要】......個性化輔導(dǎo)授課案教師:盧天明學(xué)生:時間2016年月日時段相似三角形的判定教學(xué)目
2025-04-23 07:43
【摘要】......【一】知識梳理【1】比例①定義:四個量a,b,c,d中,其中兩個量的比等于另兩個量的比,那么這四個量成比例②形式:a:b=c:d,③性質(zhì):基本性質(zhì):ac=bd1、可以把比例式與等積式互
2025-03-31 06:30
【摘要】【章節(jié)訓(xùn)練】第27章相似-8 一、選擇題(共15小題)1.(2011?惠山區(qū)模擬)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC為斜邊向外作等腰直角三角形,其面積分別是S1、S2、S3,且S1+S3=4S2,則CD=( ?。.B.3ABC.D.4AB 2.(2012?深圳二模)如圖,n+
2025-04-02 01:22
【摘要】相似三角形說課稿各位評委,各位老師:大家好,我是趙勇連。今天我講的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書北師大版八年級下冊第四章第5節(jié)《相似三角形》。我將從五個方面進(jìn)行我的說課。一、教材分析(一)、教材所處的地位和作用:《相似三角形?》是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書北師大版八年級下冊第四章第5節(jié)內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了線段的比,形狀相同的圖形及相似多邊形
2024-09-02 19:21
【摘要】相似三角形對應(yīng)角相等,對應(yīng)邊成比例的三角形叫相似三角形.三角形相似判定:,對應(yīng)邊成比例。:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。1:兩角對應(yīng)相等,兩三角形相似。2:兩邊對應(yīng)成比例且夾角相等,兩三角形相似。
2024-11-17 12:54
【摘要】......相似三角形綜合培優(yōu)題型基礎(chǔ)知識點梳理:知識點1有關(guān)相似形的概念(1)形狀相同的圖形叫相似圖形,在相似多邊形中,最簡單的是相似三角形.(2)如果兩個邊數(shù)相同的多邊形的對應(yīng)角相等,
2025-07-01 00:16
【摘要】九、如下圖,△ABC中,AD∥BC,連結(jié)CD交AB于E,且AE∶EB=1∶3,過E作EF∥BC,交AC于F,S△ADE=2cm2,求S△BCE,S△AEF.十一、下圖中,E為平行四邊形ABCD的對角線AC上一點,AE∶EC=1∶3,BE的延長線交CD的延長線于G,交AD于F,求證:BF∶FG=1∶2. 26.(2010年長沙)如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y
2025-03-31 06:31
【摘要】相似三角形與全等三角形的綜合復(fù)習(xí)友情提示:請根據(jù)課本相關(guān)內(nèi)容,快速解決下列問題,8分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對應(yīng)________,各邊對應(yīng)成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角
2024-12-02 14:14
【摘要】.,已知等邊△ABC,P在AC延長線上一點,以PA為邊作等邊△APE,EC延長線交BP于M,連接AM,求證:(1)BP=CE;(2)試證明:EM-PM=AM.2、點C為線段AB上一點,△ACM,△CBN都是等邊三角形,線段AN,MC交于點E,BM,CN交于點F。求證:(1)
2025-08-01 08:59
【摘要】,已知等邊△ABC,P在AC延長線上一點,以PA為邊作等邊△APE,EC延長線交BP于M,連接AM,求證:(1)BP=CE;(2)試證明:EM-PM=AM.2、點C為線段AB上一點,△ACM,△CBN都是等邊三角形,線段AN,MC交于點E,BM,CN交于點F。求證:(1)AN=MB.(2)將△ACM繞點C按逆時針方向旋轉(zhuǎn)一定角度,如圖②所示,其他條件不
2025-08-01 08:58
【摘要】中考第一輪復(fù)習(xí):相似三角形友情提示:請根據(jù)課本相關(guān)內(nèi)容,快速解決下列問題,5分鐘后交流展示你的成果?!疚曳此迹沂崂怼浚ㄒ唬┫嗨迫切?.定義:各角對應(yīng)________,各邊對應(yīng)成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角形一邊的直線
2024-12-08 11:56