【正文】
????????000c o ss i nc o ss i n010000000100000?0?1212121211111TTTTGXGPlAKGXNTTT??協(xié)方差基準(zhǔn)的性質(zhì) ?????????????????mmmmmmmyyxyyyxyyyxyyxxxyxxxXqqqqqqqqqqQ?????????11111111111111 m個(gè)點(diǎn)的協(xié)因數(shù)陣,其秩為 2md,其協(xié)因數(shù)陣可表示為: 按附有基準(zhǔn)條件的平差模型: 首級(jí)平面控制網(wǎng)中的絕對(duì)和相對(duì)點(diǎn)位精度 000)()()( )()()(11111111111111111111111111???????????????????GQGQGGGGGGGGGGGNGGNNGGNQPlAGGNXXETEETTEETTTXTT????????????????? ???????????????????0))( 0)()()()()(011111111111111111111TETEETETETEETETETEETETTGGGGGGQGGGGGGGGGGGGGGNGGN顧及法方程逆陣關(guān)系: 法方程的解可表示為: 首級(jí)平面控制網(wǎng)中的絕對(duì)和相對(duì)點(diǎn)位精度 0,0 001011 120 ?????????????tmt yyyxXqqGQ ??1)、協(xié)方差位置基準(zhǔn)的性質(zhì) 0,0 000111 120 ?????????????tmt xyxxXqqGQ ?? 即: 即: 首級(jí)平面控制網(wǎng)中的絕對(duì)和相對(duì)點(diǎn)位精度 ??????????????????????????????????????????????????????????????????????????????????????????0000c o ss i nc o ss i n0000c o ss i nc o ss i n121212122201212121222022212122222121221211111212111112221212222212122121111121211111TTTTqqqqqqqqqqqqqqqqTTTTqqqqqqqqqqqqqqqqyqxqyqxqyqxqyqxqypxpypxpypxpypxpyyxyyyxyyxxxyxxxyyxyyyxyyxxxyxxx??0100120 1 ???????????GQ X?2)、協(xié)方差方位基準(zhǔn)的性質(zhì) 方位基準(zhǔn)點(diǎn) 1, 2的協(xié)方差滿足: 任意點(diǎn) p,q 與方位基準(zhǔn)點(diǎn) 1, 2的協(xié)方差滿足: 首級(jí)平面控制網(wǎng)中的絕對(duì)和相對(duì)點(diǎn)位精度 0]))(([)( ])([)( )()( ))((1111112211111122111221022????????????????????PlAGGGGIPlAGGNPlAGGNNPlAGGNXAlPAGGNLXXfPAQXTTETETTTTTTTTT???在不同協(xié)方差基準(zhǔn)下的協(xié)方差轉(zhuǎn)換關(guān)系 022 ?XG T ?新協(xié)方差基準(zhǔn)下的條件方程: 變換基準(zhǔn)后的坐標(biāo)保持不變, 首級(jí)平面控制網(wǎng)中的絕對(duì)和相對(duì)點(diǎn)位精度 ))(())(()()()()()()()()()()(12221211121221212212221221221212212222112222222TETEXTETEXXXXXXXXXXTETEXXXTETEXXXTETEXTEETTEETTTXGGGGIQGGGGINNNNNQNNNQGGGGINQGGGGQNGGGGINQGGGGGGGGNQGGNNGGNQ??????????????????????????????變換基準(zhǔn)后的協(xié)方差變換公式: 首級(jí)平面控制網(wǎng)中的絕對(duì)和相對(duì)點(diǎn)位精度 0][][c o ss i nc o ss i n000100000101010100101010,0,02222221122122??????????????????????????????????????????GQFFQGGIQGGIQTTTTGxyxyxyGIGGAGNGNGXTXTeXTeXijijijijTmmTe