【摘要】二次函數(shù)的應用(1)教材分析本節(jié)課要經(jīng)歷探索長方形和窗戶透光最大面積問題的過程,進一步獲得利用數(shù)學方法解決實際問題的經(jīng)驗,并進一步感受數(shù)學模型思想和數(shù)學的應用價值.在實際背景中解決最優(yōu)化問題,不是很容易的一件事.首先,實際問題的敘述往往比較長,使人感到問題很難,其次,分析其中各個量之間的關(guān)系也不是—件輕松的事情,要想解決好這類問題
2024-11-27 04:44
【摘要】二次函數(shù)的應用(2)教材分析從題目來看,“何時獲得最大利潤”似乎是商家才應該考慮的問題.但是你知道嗎?這正是我們研究的二次函數(shù)的范疇.因為二次函數(shù)化為頂點式后,很容易求出最大或最小值.而何時獲得最大利潤就是當自變量取何值時,函數(shù)值取最大值的問題.因此本節(jié)課中關(guān)鍵的問題就是如何使學生把實際問題轉(zhuǎn)化為數(shù)學問題,從而把數(shù)學知識運用于實踐.即是否
2024-11-27 14:40
【摘要】二次函數(shù)的應用(2)學習目標:1、經(jīng)歷探索商品銷售中最大利潤等問題的過程。2、能夠分析和表示實際問題中變量之間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識求出實際問題的最大(?。┲祵W習重點:會根據(jù)實際問題列出二次函數(shù)關(guān)系式,并能運用二次函數(shù)的知識求出其最大(?。┲怠W習難點:分析和表示實際問題中變量之間的二次函數(shù)關(guān)系,正確的
2024-12-06 04:09
【摘要】北師大版九年級下冊第二章《二次函數(shù)》?(1)設矩形的一邊AB=xm,那么AD邊的長度如何表示??(2)設矩形的面積為ym2,當x取何值時,y的值最大?最大值是多少?何時面積最大?如圖,在一個直角三角形的內(nèi)部作一個矩形ABCD,其中AB和AD分別在兩直角邊上.M40m30mABCD
2024-12-15 15:24
【摘要】二次函數(shù)的應用(1)學習目標:1、掌握長方形和窗戶透光最大面積問題,體會數(shù)學的模型思想和數(shù)學應用價值2、學會分析和表示不同背景下實際問題中的變量之間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識解決實際問題.學習重點:本節(jié)的重點是應用二次函數(shù)解決圖形有關(guān)的最值問題,這是本書惟一的一種類型,也是二次函數(shù)綜合題目中常見的一種類型.在二次函數(shù)的
2024-11-27 02:28
【摘要】?二次函數(shù)y=ax2+bx+c的圖象和x軸交點的坐標與一元二次方程ax2+bx+c=0的根有什么關(guān)系?二次函數(shù)y=ax2+bx+c的圖象和x軸交點一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判別式b2-4ac有兩個交點有兩個相異的實數(shù)根b2-4ac0有一個交點有兩個相等的實數(shù)
2024-11-25 00:01
【摘要】第二章二次函數(shù)二次函數(shù)的應用知識點最大利潤問題,在銷售過程中,發(fā)現(xiàn)一周利潤y(元)與每件銷售價x(元)之間的關(guān)系滿足y=-2(x-20)2+1558,由于某種原因,銷售價需滿足15≤x≤22,那么一周可獲得的最大利潤是(D),100件按批發(fā)價每件30元,每多批發(fā)10件
2025-06-24 00:31
【摘要】第二章二次函數(shù)二次函數(shù)的應用知識點1利用二次函數(shù)求圖形面積的最值20cm,則這個直角三角形的最大面積為(B)cm2cm2cm22.用長8m的鋁合金條制成使窗戶的透光面積最大的矩形窗框(如圖),那么這個窗戶的最大透光面積是(C)A.6425m2
2025-06-24 00:33
【摘要】(第2課時)2020--8--25二次函數(shù)的圖象與性質(zhì)2020/12/24復習:1、拋物線向上平移3個單位,得到拋物線;2、拋物線向平移個單位,得到拋物線
【摘要】1一元二次方程-5t2+40t=0的根為:。2一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=。當△﹥0方程根的情況是:;當△=0時,方程
2024-11-25 00:02
【摘要】4二次函數(shù)的應用第1課時【基礎(chǔ)梳理】利用二次函數(shù)求幾何圖形的最大面積的基本方法(1)引入自變量.(2)用含自變量的代數(shù)式分別表示與所求幾何圖形相關(guān)的量.(3)根據(jù)幾何圖形的特征,列出其面積的計算公式,并且用函數(shù)表示這個面積.(4)根據(jù)函數(shù)關(guān)系式,求出最大值及取得最大值時自變量的值.【自我診斷】
2025-06-18 13:43
2025-06-20 06:48
【摘要】4二次函數(shù)的應用第2課時【基礎(chǔ)梳理】(1)引入_______.(2)用含_______的代數(shù)式分別表示銷售單價或銷售收入及銷售量.自變量自變量(3)用含_______的代數(shù)式表示銷售的商品的單件盈利.(4)用函數(shù)及含_______的代數(shù)式分別表示銷售利潤,即___________.(5)根
【摘要】第二章二次函數(shù)確定二次函數(shù)的表達式(第1課時)??y=ax2+bx+c(a,b,c為常數(shù),a≠0)y=a(x-h)2+k(a≠0)復習引入1y=kx+b(k,b為常數(shù),k≠0)的關(guān)系式時,通常需要個獨立的條件.確定反比例函數(shù)(k≠0)關(guān)系式
2024-12-08 14:40