【正文】
LmLL mnxmxny 圓周卷積是線性卷積的周期延拓序列的主值序列 . 計算周期卷積: ? ?? ??????1021 )()(~ LmLmnxmxny? ?? ? ? ? 因此故由于 ,10 11 mxmxLm L ???????????????rLmmrLnxmx )()( 2101? ??????????rLmmrLnxmx1021 )()(???????rl rlny )(圓周卷積是線性卷積的周期延拓序列的主值序列 . 可見 ,周期卷積為線性卷積的周期延拓,其周期為 L。 四、圓周卷積和 設(shè) x1(n)和 x2(n)均為長度為 N的有限長序列,且有: 和 ? ?)()( 11 kXnxD F T ? ? ? )()( 22 kXnxD F T ?)()()( 21 kXkXkY ??如果: ? ?)()( kYI D F Tny ?則: N )(2 nx? ?? ? ? ?)()( 11021 nxnRmnxmx NNmN ??????? ?? ? ??N )(1 nx? ?? ? ? ?)()( 21012 nxnRmnxmx NNmN ??????? ?? ? ??12( ) ( ) ( )( ) [ ( )]Y k X k X ky n IDF S Y k???證:由周期卷積和,若 , 則 1120( ) ( )Nmx m x n m?????1120( ) ( ) ( ) [ ( ) ( ( ) ) ] ( )NN N Nmy n y n R n x m x n m R n??? ? ? ??1120( ( ) ) ( ( ) )NNNmx m x n m?????1120( ) ( ( ) )NNmx m x n m?????圓周卷積過程: 1)補零 (當(dāng)兩序列不等長時 ) 2)周期延拓 (有限長序列變周期序列 ) 3)翻褶,取主值序列 (周期序列的翻褶 ) 4)圓周移位 5)相乘相加 x(n) n 0 1 2 3 4 5 6 1 2 3 4 2 1 3 2 1 3 2 1 3 … … x(n) n 0 1 2 3 4 5 6 1 2 3 4 2 1 3 2 1 3 2 1 3 … … n x(n) 0 1 2 3 4 5 6 1 2 3 4 … … 2 1 3 2 1 3 2 1 3 x(n) n 0 1 2 3 4 5 6 1 2 3 4 … … 2 1 3 2 1 3 2 1 3 例:求下面兩序列的 6點圓周 (循環(huán) )卷積。的圓周共軛反對稱分量該序列的復(fù)數(shù)序列虛部乘以D F TD F Tj ?證明: )()(]))(())(([21)]())(()([21) ] }([)]([{21) ] }(I m [{)]()([21)](I m [****kXkRkNXkXkRkNXkXnxD F TnxD F TnxjD F TnxnxnxjopNNNNN?????????????、六 )]([)](I m [)]([)](R e [nxD F TkXjnxD F TkXopep?? ,同樣,可證明:(k)圓周共軛對稱分量與圓周共軛反對稱分量的對稱性 )()()()1( kXkXkX opep ??、)())(()())(()()()2(***kRkNXkRkXkXkXNNepNNepepep??????、)())(()())(()()()3(***kRkNXkRkXkXkXNNopNNopopop?????????、虛序列的對稱特性 當(dāng) x(n)為實序列時 , 根據(jù)特性之三 , 則 X(k)=Xep(k) 又據(jù) Xep(k)的對稱性: )())(()( * kRkNXkX NNepep ?? 當(dāng) x(n)為純虛序列時 , 根據(jù)特性之四 , 則 X(k)=Xop(k) 又據(jù) Xop(k)的對稱性: )())(()( * kRkNXkX NNopop ???)())(()( * kRkNXkX NN???)())(()( * kRkNXkX NN????( ) ( )x n X kR e[ ( )] ( )epx n X kI m [ ( )] ( )opj x n X k( ) R e [ ( ) ]epx n X k( ) I m [ ( ) ]opx n j X k總結(jié):共軛對稱性 R e[ ( )] ( ) ( )epx n X k X k?I m [ ( )] 0 ( ) 0opj x n X k??( ) R e [ ( ) ]epx n X k( ) I m [ ( )]opx n j X k純虛序列的共軛對稱性 R e[ ( )] 0 ( ) 0epx n X k??I m [ ( )] ( ) ( )opj x n X k X k?( ) R e [ ( ) ]epx n X k( ) I m [ ( )]opx n j X k實數(shù)序列的共軛對稱性 11[ ( ) ] ( )D F T x n X k? 22[ ( ) ] ( )D F T x n X k?解:利用兩序列構(gòu)成一個復(fù)序列12( ) ( ) ( )w n x n jx n??12( ) [ ( )] [ ( ) ( )]W k D F T w n D F T x n j x n? ? ?則12[ ( )] [ ( )]D F T x n j D F T x n??12( ) ( )X k jX k??例:設(shè) x1(n)和 x2(n)都是 N點的實數(shù)序列,試用一次 N點 DFT運算來計算它們各自的 DFT: 1 ( ) R e [ ( )]x n w n?由得11( ) [ ( )] { R e [ ( )]} ( )epX k D F T x n D F T w n W k? ? ?*1 [ ( ( ) ) ( ( ) ) ] ( )2 N N NW k W N k R k? ? ?2 ( ) I m [ ( )]x n w n?由得221( ) [ ( ) ] { I m [ ( ) ] } ( )opX k DFT x n DFT w n W kj? ? ?*1 [ ( ( ) ) ( ( ) ) ] ( )2 N N NW k W N k R kj? ? ?)10()()]([)(10????? ???NkWnxnxD F TkXNnnkN)30()(304 ??? ??kWnxnnk)30(4321 34244 ?????? kWWW kkk1043214321)0( 040404 ????????? WWWXjWWWWWWX222243214321)1(141414342414??????????????26443214321)2(242424644424????????????WWWWWWXjXX 22)1()3( * ????例:求序列: x(n) = ?(n)+2 ?(n1)+ 3?(n2)+4 ?(n3) 的 4點 DFT。 有限長序列的圓周共軛對稱分量與圓周共軛反對稱分量分別定義為 : *1( ) [ ( ) ( ) ]2ex n x n x n? ? ?*1( ) [ ( ) ( ) ]2ex n x n x n? ? ?(( )) Nxn* (( )) Nx N n? )())(()())(()]([)]([)(***kRkNXkRkXnxD F TnxD F TkXNNNN?????則:,如果:證明: ????10** )()()]([NnNnkN kRWnxnxD F T?????10* )(])([NnNnkN kRWnx ?????10* )(])([NnNnkNNnN kRWWnx?????10*)( )(])([NnNnkNN kRWnx)())((* kRkNX NN?? )()]())(([)]([)(** kXnRnxD F TnxD F TkXNN ???則:,如果:證明: )(])([])([])([)())(()]())(([**10*0)1(*1010**kXWnxWnxWnxWnRnxnRnxD F TNnnkNNnnkNNnnkNNnnkNNNNN??????????????????????可知: )())(()( ** kRkXnx NN??)()())(( ** kXnRnx NN ?? )()(]))(())(([21) ] }({R e [)]([)(*kXkRkNXkXnxD F TnxD F TkXepNNN?????則:如果:的圓周共軛對稱分量。 )(~ nx 有限長