freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學試卷分類匯編易錯易錯壓軸勾股定理選擇題(10)-文庫吧資料

2025-04-01 22:50本頁面
  

【正文】 a的面積等于1號的面積加上2號的面積,b的面積等于2號的面積加上3號的面積,c的面積等于3號的面積加上4號的面積,據(jù)此可以求出三個的面積之和.【詳解】利用勾股定理可得: ,∴ 故選B【點睛】本題主要考查勾股定理的應用,熟練掌握相關性質定理是解題關鍵.12.C解析:C【解析】試題解析:作點關于直線的對稱點,連接并延長,與直線的交點即為使得取最大值時對應的點此時過點作于點如圖,四邊形為矩形,的最大值為:故答案為:13.C解析:C【分析】作DE⊥AB于E,由勾股定理計算出可求BC=8,再利用角平分線的性質得到DE=DC,設DE=DC=x,利用等等面積法列方程、解方程即可解答.【詳解】解:作DE⊥AB于E,如圖,在Rt△ABC中,BC==8,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=6(8﹣x),解得x=3,即點D到AB邊的距離為3.故答案為C.【點睛】本題考查了角平分線的性質和勾股定理的相關知識,理解角的平分線上的點到角的兩邊的距離相等是解答本題的關鍵..14.A解析:A【分析】根據(jù)正方形的面積公式以及勾股定理,結合圖形進行分析發(fā)現(xiàn):大正方形的面積即直角三角形斜邊的平方25,也就是兩條直角邊的平方和是25,四個直角三角形的面積和是大正方形的面積減去小正方形的面積即2ab=12,據(jù)此即可得結果.【詳解】根據(jù)題意,結合勾股定理a2+b2=25,四個三角形的面積=4ab=251=24,∴2ab=24,聯(lián)立解得:(a+b)2=25+24=49.故選A.15.A解析:A【分析】根據(jù)直角三角形的兩直角邊長分別為和,可計算出正方形的邊長,從而得出正方形的面積.【詳解】解:3和5為兩條直角邊長時,小正方形的邊長=53=2,∴小正方形的面積22=4;綜上所述:小正方形的面積為4;故答案選A.【點睛】本題考查了勾股定理及其應用,正確表示出直角三角形的面積是解題的關鍵.16.C解析:C【解析】試題分析:根據(jù)題意得:=13,4ab=13﹣1=12,即2ab=12,則==13+12=25,故選C.考點:勾股定理的證明;數(shù)學建模思想;構造法;等腰三角形與直角三角形.17.D解析:D【分析】根據(jù)勾股定理求出AB的長,即為AC的長,再根據(jù)數(shù)軸上的點的表示解答.【詳解】由勾股定理得,∴∵點A表示的數(shù)是1∴點C表示的數(shù)是故選D.【點睛】本題考查了勾股定理、實數(shù)與數(shù)軸,熟記定理并求出AB的長是解題的關鍵.18.D解析:D【分析】3世紀,漢代趙爽在注解《周髀算經(jīng)》時,通過對圖形的切割、拼接、巧妙地利用面積關系證明了勾股定理.【詳解】由題意,可知這位偉大的數(shù)學家是趙爽.故選D.【點睛】考查了數(shù)學常識,勾股定理的證明.3世紀我國漢代的趙爽在注解《周髀算經(jīng)》時給出的,人們稱它為“趙爽弦圖”.趙爽通過對這種圖形切割、拼接,巧妙地利用面積關系證明了著名的勾股定理.19.D解析:D【分析】先根據(jù)勾股定理求出梯子的長,進而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=+=,在Rt△ABC中,∵∠ABC=90176?!螧FC=90176。=60176。30176。BD=AD=2DE=,AE=BE=DE=3,∵BC2+BD2=12+(2)2=13=CD2,∴△BCD是直角三角形,∠CBD=90176?!唿cE為AB的中點,DE⊥AB,∴BD=AD,AE=BE,∵∠DAB=30176。得出∠BCF=30176。∴△BB′E是等腰直角三角形,則BB′=BE=,又∵BE=DE,B′E⊥BD,∴DB′=BB′=.故選B.【點睛】考查了平行四邊形的性質以及等腰直角三角形性質.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.7.D解析:D【解析】【分析】連接BD,作CF⊥AB于F,由線段垂直平分線的性質得出BD=AD,AE=BE,得出∠DBE=∠DAB=30176?!郆M==10,∴DN+MN的最小值是10.故選:C.【點睛】此題考查正方形的性質和軸對稱及勾股定理等知識的綜合應用,解題的難點在于確定滿足條件的點N的位置:利用軸對稱的方法.然后熟練運用勾股定理.6.B解析:B【解析】【分析】如圖,連接BB′.根據(jù)折疊的性質知△BB′E是等腰直角三角形,則BB′=BE.又B′E是BD的中垂線,則DB′=BB′.【詳解】∵四邊形ABCD是平行四邊形,BD=2,∴BE=BD=1.如圖2,連接BB′.根據(jù)折疊的性質知,∠AEB=∠AEB′=45176。
點擊復制文檔內(nèi)容
小學相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1