freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)與平行四邊形有關(guān)的壓軸題-文庫吧資料

2025-03-30 22:25本頁面
  

【正文】 析式可得,解得,∴F點坐標(biāo)為(﹣1,﹣1);(3)四邊形CDEF是菱形.證明:∵y=x2+x﹣=(x+1)2﹣2,∴D(﹣1,﹣2),∵F(﹣1,﹣1),∴DF⊥x軸,且CE∥x軸,∴DF⊥CE,∵C(0,﹣),且F(﹣1,﹣1),D(﹣1,﹣2),∴DF和CE互相平分,∴四邊形CDEF是菱形.【點睛】本題考查菱形的判定方法,二次函數(shù)的性質(zhì),以及二次函數(shù)與二元一次方程組.11.如圖,點E是正方形ABCD的邊AB上一點,連結(jié)CE,過頂點C作CF⊥CE,交AD延長線于F.求證:BE=DF.【答案】證明見解析.【解析】分析:根據(jù)正方形的性質(zhì),證出BC=CD,∠B=∠CDF,∠BCD=90176。cos30176?!唷螦MN=30176?!螱BN=30176。∠FBG=∠FGB=∠ABG=45176。即可解決問題.試題解析:(1)結(jié)論:AG2=GE2+GF2.理由:連接CG.∵四邊形ABCD是正方形,∴A、C關(guān)于對角線BD對稱,∵點G在BD上,∴GA=GC,∵GE⊥DC于點E,GF⊥BC于點F,∴∠GEC=∠ECF=∠CFG=90176。求線段BG的長.【答案】(1)AG2=GE2+GF2(2)【解析】試題分析:(1)結(jié)論:AG2=GE2+GF2.只要證明GA=GC,四邊形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可證明;(2)作BN⊥AG于N,在BN上截取一點M,使得AM=BM.設(shè)AN=x.易證AM=BM=2x,MN=x,在Rt△ABN中,根據(jù)AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根據(jù)BG=BN247。EC(2)四邊形AECF是菱形∵△ADE≌△B39。C且∠DEA=∠B39?!唷螪=∠B39。利用AAS證明全等,則結(jié)論可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根據(jù)等腰三角形的性質(zhì)可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,則可證四邊形AECF是菱形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形∴AD=BC,CD∥AB,∠B=∠D∵平行四邊形ABCD沿其對角線AC折疊∴BC=B39。C,∠B=∠D=∠B39。;∵點B′是點B關(guān)于直線AE的對稱點,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2將AB=4cm,BE=3cm,AE=5cm,∴AO= cm,∴BO==cm,∴BB′=2BO=cm,∴在Rt△BB39?!唷螧B39。交AE于點O,由折線法及點E是BC的中點,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB39。即∠AEF=90176。EC的角平分線,即∠B′EF=∠FEC,∴∠AEF=180176。即可得到AE⊥EF;(2)連接BB′,通過折疊,可知∠EBB′=∠EB′B,由E是BC的中點,可得EB′=EC,∠ECB′=∠EB′C,從而可證△BB′C為直角三角形,在Rt△AOB和Rt△BOE中,可將OB,BB′的長求出,在Rt△BB′C中,根據(jù)勾股定理可將B′C的值求出.【詳解】(1)由折線法及點E是BC的中點,∴EB=EB′=EC,∠AEB=∠AEB′,∴△B39?!螪EA=∠CEP,∴△ADE≌△PCE(ASA)∴AE=PE,又CE∥AB,∴BC=PC,在Rt△BGP中,∵BC=PC,∴CG=BP=BC,∴CG=CD.【點睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),角平分線的性質(zhì)定理,直角三角形斜邊中線的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考壓軸題.5.如圖所示,矩形ABCD中,點E在CB的延長線上,使CE=AC,連接AE,點F是AE的中點,連接BF、DF,求證:BF⊥DF.【答案】見解析.【解析】【分析】延長BF,交DA的延長線于點M,連接BD,進(jìn)而求證△AFM≌△EFB,得AM=BE,F(xiàn)B=FM,即可求得BC+BE=AD+AM,進(jìn)而求得BD=BM,根據(jù)等腰三角形三線合一的性質(zhì)即可求證BF⊥DF.【詳解】延長BF,交DA的延長線于點M,連接BD.∵四邊形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,F(xiàn)B=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【點睛】本題考查了矩形的性質(zhì),全等三角形的判定和對應(yīng)邊相等的性質(zhì),等腰三角形三線合一的性質(zhì),本題中求證DB=DM是解題的關(guān)鍵.6.現(xiàn)有一張矩形紙片ABCD(如圖),其中AB=4cm,BC=6cm,點E是BC的中點.將紙片沿直線AE折疊,點B落在四邊形AECD內(nèi),記為點B′,過E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置關(guān)系;(2)求線段B′C的長,并求△B′EC的面積.【答案】(1)見解析;(2)S△B′EC=.【解析】【分析】(1)由折線法及點E是BC的中點,可證得△B39?!唷?=∠3在△BAF與△ADE中,∠1=∠3 BA=AD ∠BAF=∠D,∴△BAF≌△ADE(ASA)∴AF=DE.(2)證明:過點D作DM⊥GF,DN⊥GE,垂足分別為點M,N.由(1)得∠1=∠3,∠BGA=∠AND=90176。又∵BF⊥AE,∴∠AGB=90176。AD是邊BC上的中線,得AD=BD=CD,即可證明.【詳解】(1)證明:∵AE∥BC,DE∥AB ,∴四邊形ABDE是平行四邊形,∴AE=BD,∵AD是邊BC上的中線,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四邊
點擊復(fù)制文檔內(nèi)容
黨政相關(guān)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1