【摘要】第一篇:教學(xué)設(shè)計(jì)教案 教學(xué)準(zhǔn)備 1、知識(shí)與技能:理解空間向量基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示,會(huì)在簡單問題中選用空間三個(gè)不共面向量作為基底表示其他向量。 2、過程與方法:...
2024-11-16 01:42
【摘要】空間向量及其運(yùn)算空間向量及其加減運(yùn)算教學(xué)目標(biāo):(1)通過本章的學(xué)習(xí),使學(xué)生理解空間向量的有關(guān)概念。(2)掌握空間向量的加減運(yùn)算法則、運(yùn)算律,并通過空間幾何體加深對(duì)運(yùn)算的理解。能力目標(biāo):(1)培養(yǎng)學(xué)生的類比思想、轉(zhuǎn)化思想,數(shù)形結(jié)合思想,培養(yǎng)探究、研討、綜合自學(xué)應(yīng)用能力。(2)培養(yǎng)學(xué)生空間想象能力,能借助圖形理解空
2024-11-28 14:20
【摘要】預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引3.1空間向量及其運(yùn)算預(yù)習(xí)學(xué)案課堂講義課后練習(xí)工具第三章空間向量與立體幾何欄目導(dǎo)引
2025-07-23 07:00
【摘要】講練學(xué)案部分§空間向量及其加減運(yùn)算.知識(shí)點(diǎn)一空間向量的概念判斷下列命題是否正確,若不正確,請(qǐng)簡述理由.①向量AB與AC是共線向量,則A、B、C、D四點(diǎn)必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2024-12-12 01:49
【摘要】新課標(biāo)高二數(shù)學(xué)同步測試(2-)圖一、選擇題:在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請(qǐng)把正確答案的代號(hào)填在題后的括號(hào)內(nèi)(每小題5分,共50分).1.在平行六面體ABCD—A1B1C1D1中,M為AC與BD的交點(diǎn),若=,=,=.則下列向量中與相等的向量是() A. B. C. D.2.在下列條件中,使M與A、B、C一定共面的是 ()
2025-06-25 16:23
【摘要】第七章立體幾何第六節(jié)空間向量及其運(yùn)算抓基礎(chǔ)明考向提能力教你一招我來演練返回[備考方向要明了]考什么.,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示.
2025-05-06 08:38
【摘要】§3.空間向量的數(shù)乘運(yùn)算知識(shí)點(diǎn)一空間向量的運(yùn)算已知ABCD—A′B′C′D′是平行六面體.(1)化簡12'23AABCAB??(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′對(duì)角線BC′上的34分點(diǎn),設(shè)'MNABADAA???
【摘要】(了解空間向量的概念/掌握空間向量的線性運(yùn)算/掌握空間向量的數(shù)量積,能運(yùn)用向量的數(shù)量積判斷向量的共線與垂直)空間向量及其運(yùn)算1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量.(1)空間的一個(gè)就是一個(gè)向量.(2)向量一般用有向線段表示.同向等長的有向線段表示
2025-05-06 02:38
【摘要】下關(guān)一中2014級(jí)數(shù)學(xué)空間向量及其運(yùn)算1.空間向量的概念:在空間,我們把具有大小和方向的量叫做向量注:⑴空間的一個(gè)平移就是一個(gè)向量⑵向量一般用有向線段表示同向等長的有向線段表示同一或相等的向量⑶空間的兩個(gè)向量可用同一平面內(nèi)的兩條有向線段來表示2.空間向量的運(yùn)算定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘向量運(yùn)算如下;;運(yùn)算律:⑴加法交換律:⑵加法結(jié)
2025-03-26 11:39
【摘要】數(shù)量積運(yùn)算一、兩個(gè)向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個(gè)向量的數(shù)量積注:①兩個(gè)向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2024-11-22 12:14
【摘要】坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,)
【摘要】數(shù)乘運(yùn)算上一節(jié)課,我們把平面向量的有關(guān)概念及加減運(yùn)算擴(kuò)展到了空間.平面向量空間向量加法減法運(yùn)算加法:三角形法則或平行四邊形法則減法:三角形法則運(yùn)算律加法交換律abba???加法結(jié)合律:()()ab
【摘要】空間向量及其運(yùn)算(第一課時(shí))普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)選修2-1第三章第一節(jié)空間向量及其加減、數(shù)乘運(yùn)算說課提綱2學(xué)情分析目標(biāo)分析34教法分析5過程分析教材分析16教學(xué)反思一、教材所處的地位和作用?教學(xué)
2025-06-15 19:01
【摘要】§3.空間向量運(yùn)算的坐標(biāo)表示知識(shí)點(diǎn)一空間向量的坐標(biāo)運(yùn)算設(shè)a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k;(2)若(ka+b)⊥(a-3b),求k.解(1)ka+b=(k-2,5k+3,-k+5)
2024-11-24 03:14
【摘要】數(shù)乘運(yùn)算(二)一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作//ab:對(duì)空間任意兩個(gè)向量