【摘要】1.1正弦定理1.△ABC中,∠A、∠B、∠C所對的邊分別用小寫字母a、b、c來表示.2.在Rt△ABC中,c是斜邊,則C=90°;sinC=1.3.若三角形的三邊分別是a=6,b=8,c=10,則sinA=35;sinB=45;sinC=1.4.在Rt△A
2024-12-13 03:48
2024-12-09 03:23
【摘要】1.1正弦定理學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入在雷達(dá)兵的訓(xùn)練中,有一個(gè)項(xiàng)目叫“捉鬼”(戰(zhàn)士語),即準(zhǔn)確地發(fā)現(xiàn)敵臺的位置.在該項(xiàng)目訓(xùn)練中,追尋方的安排都是兩個(gè)小組作為一個(gè)基本單位去執(zhí)行任務(wù),用戰(zhàn)士的話說就是兩條線(即兩臺探測器分別探出了敵臺的
2024-11-21 23:16
【摘要】一.創(chuàng)設(shè)情境.B.A某游覽風(fēng)景區(qū)欲在兩山之間架設(shè)一觀光索道,要測的兩山之間,現(xiàn)在岸邊選定1公里的基線AB,并在A點(diǎn)處測得∠A=600,在C點(diǎn)測得∠C=450,如何求得?.C解:過點(diǎn)B作BD⊥AC交AC點(diǎn)D在Rt△ADB中,sinA=
2024-11-22 08:49
【摘要】正弦定理正弦定理回憶一下直角三角形的邊角關(guān)系?ABCcba222cba??Acasin?Bcbsin?Abatan????90BA兩等式間有聯(lián)系嗎?cBbAa??sinsin1sin?CCcBbAasinsinsin??即正弦定理,定理對任意
2024-11-21 23:32
【摘要】正弦定理(二)課時(shí)目標(biāo);證明.1.正弦定理:asinA=bsinB=csinC=2R的常見變形:(1)sinA∶sinB∶sinC=________;(2)asinA=bsinB=csinC=a+b+csinA+sinB+sinC=______;(3)a=________
2024-12-09 10:14
【摘要】課題:正弦定理(2)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】運(yùn)用正弦定理解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題【課前預(yù)習(xí)】1.在ABC?中,若5:4:3sin:sin:sin?CBA,則ABC?的形狀是()A.等腰三角形B.直角三角形C.
2024-12-09 10:15
【摘要】正弦定理班級:學(xué)號:姓名:基礎(chǔ)訓(xùn)練:1.已知在ΔABC中.A=60o,B=450,b=22,則a為=ABC中,222sinsinsinCAB??。則ΔABC為3.在ΔABC中,若si
2024-11-19 17:58
【摘要】1.2余弦定理△ABC中,已知邊a,b及∠C.1.若∠C=90°,則c2=a2+b2.2.若∠C是銳角,如左下圖,作AD⊥BC于點(diǎn)D,于是AD=b·sinC,CD=b·cos_C,BD=a-bcos_C.3.若∠C為鈍角,如右上圖,作
2024-12-13 03:46
【摘要】第一篇:高中數(shù)學(xué)《正弦定理》教案3蘇教版必修5 第3課時(shí)正弦定理 知識網(wǎng)絡(luò) ì判斷三角形狀正弦定理的應(yīng)用 ? í平面幾何中某些問題 ? ?解的個(gè)數(shù)的判定 學(xué)習(xí)要求 1.掌握正弦定理和...
2024-10-21 04:50
【摘要】第一篇:高中數(shù)學(xué)《正弦定理》教案1蘇教版必修5 第1課時(shí):§(1) 【三維目標(biāo)】: 一、知識與技能 ,掌握正弦定理的內(nèi)容和推導(dǎo)過程; (會(huì)運(yùn)用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問...
2024-10-07 01:35
【摘要】2.1數(shù)列1.設(shè)A、B是兩個(gè)集合,按照某一法則f,對于集合A中的每一個(gè)元素,集合B中都有唯一確定的元素和它對應(yīng),那么,法則f叫做集合A到集合B的映射.2.設(shè)函數(shù)f(x)=x(x∈R),則函數(shù)f(x)的圖象是一條直線.3.設(shè)函數(shù)f(x)=x(x∈N*),則函數(shù)f(x)的圖象是一系列的點(diǎn)
2024-12-12 13:12
【摘要】正弦定理A組基礎(chǔ)鞏固1.在△ABC中,已知b=40,c=20,C=60°,則此三角形的解的情況是()A.有一解B.有兩解C.無解D.有解但解的個(gè)數(shù)不確定解析:由正弦定理bsinB=csinC,得sinB=bsinCc=40×3220=31.∴
2024-12-12 20:25
【摘要】正弦定理(1)【學(xué)習(xí)目標(biāo)】1.通過對直角三角形邊角間數(shù)量關(guān)系的研究,發(fā)現(xiàn)正弦定理.2.能夠利用向量方法證明正弦定理,并運(yùn)用正弦定理解決兩類解三角形的簡單問題.【重點(diǎn)難點(diǎn)】1.重點(diǎn):正弦定理的發(fā)現(xiàn),證明及其簡單應(yīng)用.2.難點(diǎn):正弦定理的應(yīng)用.【學(xué)習(xí)過程】一、自主學(xué)習(xí):任務(wù)1:在直角三角形中三角形的邊與
【摘要】第一篇:數(shù)學(xué):正弦定理教案(蘇教版必修5) 您身邊的志愿填報(bào)指導(dǎo)專家 第2課時(shí):§正弦定理(2) 【三維目標(biāo)】: 一、知識與技能 ,掌握化歸與轉(zhuǎn)化的數(shù)學(xué)思想;; 二、過程與方法 通過...
2024-11-15 04:54