freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

江西省20xx年普通高等學校招生全國統(tǒng)一考試仿真卷八理科數學試題word版含答案(參考版)

2024-12-05 05:59本頁面
  

【正文】 17. (本小題滿分 12 分) [2017懷仁一中 ] ABC△ 的三個內角 A B C, , 依次成等差數列. ( 1)若 2sin sin sinB A C? ,試判斷 ABC△ 的形狀; ( 2)若 ABC△ 為鈍角三角形,且 ac? ,試求 2 1sin 3 sin c os2 2 2 2C A A??的取值范圍. 【答案】 ( 1)正三角形;( 2) 1344??????,. 【解析】 ( 1) ∵ 2sin sin sinB A C? , ∴ 2b ac? , ∵ A B C, , 依次成等差數列, ∴ 2 πB A C B? ? ? ?, π3B?, 由余弦定理得 2 2 2 2 c o sb a c a c B? ? ? , 22a c ac ac? ? ? , ∴ ac? , ∴ ABC△ 為正三角形. ( 2) 2 1 1 c os 3 1sin 3 sin c os sin2 2 2 2 2 2 2C A A C A?? ? ? ? ? 3 1 2 3 1 3s in c o s s in c o s s in2 2 3 2 4 4A A A A A???? ? ? ? ? ????? 3 1 1 πs in c o s s in4 4 2 6A A A??? ? ? ????? ∵ π 2π23A?? , ∴ 2π π 5π3 6 6A? ? ? , ∴ 1 π 3sin2 6 2A??? ? ?????, 11 π 3s in4 2 6 4A??? ? ?????. ∴ 代數式 2 3sin 3 sin c os2 2 2 2C A A??的取值范圍是 1344??????,. 18. (本小題滿分 12 分) [2017 江師附中 ]某理科考生參加自主招生面試,從 7 道題中( 4道理科題 3 道文科題)不放回地依次任取 3 道作答. ( 1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率; ( 2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為 23 ,答對文科題的概率均為 14 ,若每題答對得 10 分,否則得零分 .現該生已抽到三道題(兩理 一文),求其所得總分 X 的分布列與數學期望 ? ?EX. 【答案】 ( 1) 15; ( 2) ? ? 956EX?. 【解析】 ( 1)記 “ 該考生在第一次抽到理科題 ” 為 事件 A , “ 該考生第二次和第三次均抽到文科題 ” 為事件 B ,則 ? ? ? ?447 35P A P A B??, , 所以該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率為 : ? ?? ? 1( | ) 5P A BP B A PA??. ( 2) X 的可能取值為 0, 10, 20, 30, 則 ? ? 1 1 3 10=3 3 4 12PX ? ? ? ?, ? ? 212 2 1 3 1 1 1310 + =3 3 4 3 4 36P X C ??? ? ? ? ? ?????, ? ? 221222 3 1 2 1 420 + =3 4 3 3 4 9P X C C??? ? ? ? ? ? ?????, ? ? 1 13 4 130 1 =12 36 9 9PX ? ? ? ? ?. 所以 X 的分布列為 : X 0 10 20 30 P 112 1336 49 19 所以, X 的數學期望 ? ? 956EX? . 19. (本小題滿分 12 分) [2017 重慶一中 ]在四邊形 ABCD 中,對角線 ,ACBD 垂直相交于點 O ,且 4OA OB OD? ? ?, 3OC? .將 BCD△ 沿 BD 折到 BED△ 的位置,使得二面角 E BD A??的大小為 90? (如圖).已知 Q 為 EO 的中點,點 P 在線段 AB 上,且2AP? . ( 1)證明:直線 PQ ADE∥ 平 面 ; ( 2)求直線 BD 與平面 ADE 所成角 ? 的正弦值. 【答案】 ( 1)證明見解析;( 2) 34343 . 【解析】 由題 90AOE? ? ? ,故 ,OA OB OE 兩兩垂直,從而可建立如圖直角坐標系O xyz? ,則 ? ?0,4,0B , ? ?0,0,3E , ? ?0, 4,0D ? , ? ?4,0,0A . ( 1)由題知 42AB? ,故 4AB AP? ,又 ? ?4,4,0AB ?? ,故 ? ?1,1,0AP ?? ,從而? ?3,1,0P ,又 30,0,2Q??????,故 33, 1, 2PQ ??? ? ?????,設平面 ADE 的法向量為 ? ?,n x y z? ,易得 ? ?4,4,0DA? , ? ?0,4,3DE? ,由 00n DAn DE? ??????得 4 4 0430xyyz???? ???,取 3x? 得? ?3, 3,4n?? ,因 0n PQ??,故直線 PQ ADE∥ 平 面 ; ( 2)由( 1)可知 ? ?3, 3,4n?? 為平面 ADE 的法向量,又 ? ?0, 8,0BD ??, 故 2 4 3s in c o s , 3 4343 4 8n B Dn B D n B D? ? ? ? ? ? ?. 20. (本小題滿分 12 分) [2017 雅禮中學 ]如圖,橢圓 221 10xyC a bab??: ( > > )的離心率為 32 , x 軸被曲線 22C y x b??: 截得的
點擊復制文檔內容
教學課件相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1