【摘要】誘導(dǎo)公式一.學(xué)習(xí)要點(diǎn):誘導(dǎo)公式及其簡(jiǎn)單應(yīng)用二.學(xué)習(xí)過(guò)程:一、復(fù)習(xí):誘導(dǎo)公式一:二、講解新課:公式二:公式三:公式四:公
2024-11-22 16:46
【摘要】誘導(dǎo)公式(二)崔文一、學(xué)習(xí)目標(biāo)1.掌握誘導(dǎo)公式四、五的推導(dǎo),并能應(yīng)用解決簡(jiǎn)單的求值、化簡(jiǎn)與證明問(wèn)題.2.對(duì)誘導(dǎo)公式一至五,能作綜合歸納,體會(huì)出五組公式的共性與個(gè)性,培養(yǎng)由特殊到一般的數(shù)學(xué)推理意識(shí)和能力.3.繼續(xù)體會(huì)知識(shí)的“發(fā)生”、“發(fā)現(xiàn)”過(guò)程,培養(yǎng)研究問(wèn)題、發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的能力.二、學(xué)習(xí)指導(dǎo)五組誘導(dǎo)公式可以概括為一
【摘要】誘導(dǎo)公式(一)崔文一、學(xué)習(xí)目標(biāo):1.了解三角函數(shù)的誘導(dǎo)公式的意義和作用.2.理解誘導(dǎo)公式的推導(dǎo)過(guò)程.3.能運(yùn)用有關(guān)誘導(dǎo)公式解決一些三角函數(shù)的求值、化簡(jiǎn)和證明問(wèn)題.二、重點(diǎn)與難點(diǎn):重點(diǎn):誘導(dǎo)公式的記憶、理解、運(yùn)用。難點(diǎn):誘導(dǎo)公式的推導(dǎo)、記憶及符號(hào)的判斷;三、自學(xué)檢測(cè)誘導(dǎo)公式一~三(1)公式一:s
2024-12-01 23:50
【摘要】誘導(dǎo)公式(三)一、學(xué)習(xí)目標(biāo)1.通過(guò)本節(jié)內(nèi)容的教學(xué),使學(xué)生進(jìn)一步理解和掌握四組正弦、余弦和正切的誘導(dǎo)公式,并能正確地運(yùn)用這些公式進(jìn)行任意角的正弦、余弦和正切值的求解、簡(jiǎn)單三角函數(shù)式的化簡(jiǎn)與三角恒等式的證明;2.通過(guò)公式的應(yīng)用,培養(yǎng)學(xué)生的化歸思想,運(yùn)算推理能力、分析問(wèn)題和解決問(wèn)題的能力;二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):四組誘導(dǎo)公式及這四組誘導(dǎo)公式
2024-12-02 01:12
【摘要】誘導(dǎo)公式(一)一、學(xué)習(xí)目標(biāo)1.通過(guò)本節(jié)內(nèi)容的教學(xué),使學(xué)生掌握?+?k2,-?角的正弦、余弦和正切的誘導(dǎo)公式及其探求思路,并能正確地運(yùn)用這些公式進(jìn)行任意角的正弦、余弦和正切值的求解、簡(jiǎn)單三角函數(shù)式的化簡(jiǎn)與三角恒等式的證明;2.通過(guò)公式的應(yīng)用,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運(yùn)算推理能力、分析問(wèn)題和解決問(wèn)題的能力;二、教學(xué)重點(diǎn)、
【摘要】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.計(jì)算sin??????-π3的值為().A.-12C.32D.-32解析sin??????-π3=-sinπ3=-32.答案D2.計(jì)算sin2(π-α)-cos(π+α)cos(-α)+1的值是
【摘要】§三角函數(shù)的誘導(dǎo)公式(2)(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)2???的誘導(dǎo)公式公式四cos()2???=sin()2???=tan()2???=2.α與2????
【摘要】3.2.2半角公式一。學(xué)習(xí)要點(diǎn):半角公式及其簡(jiǎn)單應(yīng)用。二。學(xué)習(xí)過(guò)程:復(fù)習(xí):升冪公式:降冪公式:新課學(xué)習(xí):1.半角公式2.萬(wàn)能公式例1已知(3,4)????,4cos5??,求sin,cos,tan222???例2已知si
2024-11-22 16:43
【摘要】三角函數(shù)的誘導(dǎo)公式的教學(xué)設(shè)計(jì)一、指導(dǎo)思想與理論依據(jù)數(shù)學(xué)是一門(mén)培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境——提出數(shù)學(xué)問(wèn)題——嘗試解決問(wèn)題——驗(yàn)
【摘要】第一章第2課時(shí)一、選擇題1.已知2sin(x+π2)=1,則cos(x+π)=()A.12B.-12C.32D.-32[答案]B[解析]∵2sin(x+π2)=2cosx=1,∴cosx=12.∴cos(x+π)=-cosx=-12.2.已知
【摘要】3.2.1倍角公式一。學(xué)習(xí)要點(diǎn):二倍角公式及其簡(jiǎn)單應(yīng)用。二。學(xué)習(xí)過(guò)程:復(fù)習(xí):和角公式.新課學(xué)習(xí):sin2??cos2??tan2??升冪公式:降冪公式:例1、已知5sin2
【摘要】§(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)sin2?=sin(?+?)=cos2?=cos(?+?)==cos2?-sin2?==tan
2024-12-01 23:35
2024-11-23 11:25
【摘要】一、選擇題1.sin600°+tan(-300°)的值是()A.-32B.32C.-12+3+3【解析】原式=sin(360°+240°)+tan(-360°+60°)=sin240°+tan60°
【摘要】教學(xué)目標(biāo):能記住二倍角公式,會(huì)運(yùn)用二倍角公式進(jìn)行求值、化簡(jiǎn)和證明,同時(shí)懂得這一公式在運(yùn)用當(dāng)中所起到的用途。培養(yǎng)觀察分析問(wèn)題的能力,尋找數(shù)學(xué)規(guī)律的能力,同時(shí)注意滲透由一般到特殊的化歸的數(shù)學(xué)思想及問(wèn)題轉(zhuǎn)化的數(shù)學(xué)思想。重點(diǎn)難點(diǎn):記住二倍角公式,運(yùn)用二倍角公式進(jìn)行求值、化簡(jiǎn)和證明;在運(yùn)用當(dāng)中如何正確恰當(dāng)運(yùn)用二倍角公式一、引入新課1、si